This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A123956 #38 Apr 25 2025 21:11:31 %S A123956 -1,1,1,-1,-2,-2,1,-3,4,4,-1,4,8,-8,-8,1,5,-12,-20,16,16,-1,-6,-18,32, %T A123956 48,-32,-32,1,-7,24,56,-80,-112,64,64,-1,8,32,-80,-160,192,256,-128, %U A123956 -128,1,9,-40,-120,240,432,-448,-576,256,256,-1,-10,-50,160,400,-672,-1120,1024,1280,-512,-512 %N A123956 Triangle of coefficients of polynomials P(k) = 2*X*P(k - 1) - P(k - 2), P(0) = -1, P(1) = 1 + X, with twisted signs. %C A123956 Up to signs also the coefficients of polynomials y(n+1) = y(n-1) - 2*h*y(n), arising when the ODE y' = -y is numerically solved with the leapfrog (a.k.a. two-step Nyström) method, with y(0) = 1, y(1) = 1 - h. In this case, the coefficients are negative exactly for the odd powers of h. - _M. F. Hasler_, Nov 30 2022 %D A123956 CRC Standard Mathematical Tables and Formulae, 16th ed. 1996, p. 484. %D A123956 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 799. %H A123956 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A123956 Lutterbach, <a href="https://math.stackexchange.com/questions/3444485/approximating-ode-y-ft-y-by-using-leapfrog-method">Approximating ODE y' = f(t,y) by using leapfrog method</a>, Mathematics Stack Exchange, Nov 21 2019 %H A123956 Alastair MacDougall, <a href="https://doi.org/10.2307/3619060">83.31 A Pascal-like triangle for coefficients of Chebyshev polynomials">, The Mathematical Gazette, Vol. 83, Issue 497 (Jul 1999), pp. 276-280. %F A123956 From _M. F. Hasler_, Nov 30 2022: (Start) %F A123956 a(n,0) = (-1)^(n+1), a(n,1) = (-1)^floor(n/2)*n, %F A123956 a(n,2) = (-1)^floor((n+1)/2)*A007590(n) = (-1)^floor((n+1)/2)*floor(n^2 / 2), %F A123956 a(n,n) = a(n,n-1) = (-2)^(n-1) (n > 0), %F A123956 a(n,3) / a(n,2) = { n/3 if n odd, -4*(n+2)/n if n even }, %F A123956 a(n,4) / a(n,3) = n/4 if n is even. (End) %F A123956 From _Peter Bala_, Feb 06 2025: (Start) %F A123956 Let T(n, x) and U(n, x) denote the n-th Chebyshev polynomial of the first and second kind. It appears that the row g.f.'s are as follows: for n >= 0, %F A123956 row 4*n+1: T(4*n+1, x) + U(4*n, x); row 4*n+2: - 2 - T(4*n+2, x) - U(4*n+1, x); %F A123956 row 4*n+3: 2 + T(4*n+3, x) + U(4*n+2, x); row 4*n+4: - T(4*n+4, x) - U(4*n+3, x). (End) %e A123956 Triangle begins: %e A123956 {-1}, %e A123956 { 1, 1}, %e A123956 {-1, -2, -2}, %e A123956 { 1, -3, 4, 4}, %e A123956 {-1, 4, 8, -8, -8}, %e A123956 { 1, 5, -12, -20, 16, 16}, %e A123956 {-1, -6, -18, 32, 48, -32, -32}, %e A123956 { 1, -7, 24, 56, -80, -112, 64, 64}, %e A123956 {-1, 8, 32, -80, -160, 192, 256, -128, -128}, %e A123956 { 1, 9, -40, -120, 240, 432, -448, -576, 256, 256}, %e A123956 {-1, -10, -50, 160, 400, -672, -1120, 1024, 1280, -512, -512}, %e A123956 ... %t A123956 p[ -1, x] = 0; p[0, x] = 1; p[1, x] = x + 1; %t A123956 p[k_, x_] := p[k, x] = 2*x*p[k - 1, x] - p[k - 2, x]; %t A123956 w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; %t A123956 An[d_] := Table[If[n == d && m <n, -w[[n]][[d - m + 1]], If[m == n + 1, 1, 0]], {n, 1, d}, {m, 1, d}]; %t A123956 b = Table[CoefficientList[ExpandAll[y^(d - 1)*(CharacteristicPolynomial[An[d], x] /. x -> 1/y)] /. 1/y -> 1, y], {d, 1, 11}] // Flatten %o A123956 (PARI) P=List([-1,1-'x]); {A123956(n,k)=for(i=#P, n+1, listput(P, P[i-1]-2*'x*P[i])); polcoef(P[n+1],k)*(-1)^((n-k-1)\2+!k*n\2)} \\ _M. F. Hasler_, Nov 30 2022 %Y A123956 Cf. A008312, A028297, A053117, A123235. %K A123956 sign,uned,tabl %O A123956 0,5 %A A123956 _Roger L. Bagula_ and _Gary W. Adamson_, Oct 27 2006 %E A123956 Offset changed to 0 by _M. F. Hasler_, Nov 30 2022