A123995 First occurrence of prime gaps which are perfect powers.
2, 7, 89, 1831, 5591, 9551, 89689, 396733, 3851459, 11981443, 70396393, 202551667, 1872851947, 10958687879, 47203303159, 767644374817, 1999066711391, 8817792098461, 78610833115261, 497687231721157, 2069461000669981
Offset: 1
Keywords
Examples
a(2)=89 since nextprime(89)-89=97-89=8 is the first occurrence of 8 as a difference between successive primes.
Links
- Thomas R. Nicely, First occurrence prime gaps [For local copy see A000101].
Programs
-
Maple
with(numtheory); egcd := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); return igcd(op(L)) else return 1 fi end: P:={}; Q:=[]; p:=2; for w to 1 do for k from 0 do # keep track if k mod 10^6 = 0 then print(k,p) fi; lastprime:=p; q:=nextprime(p); d:=q-p; x:=egcd(d); if x>1 and not d in P then P:=P union {d}; Q:=[op(Q), [p,d]]; print(p,d); print(P); print(Q); fi ; p:=q; od od; # let it run with AutoSave enabled.
-
Mathematica
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ@k, k++ ]; k]; perfectPowerQ[x_] := GCD @@ Last /@ FactorInteger@x > 1; dd = {1}; pp = {2}; qq = {3}; p = 3; Do[q = NextPrim@p; d = q - p; If[perfectPowerQ@d && ! MemberQ[dd, d], Print@q; AppendTo[pp, p]; AppendTo[dd, d]]; p = q, {n, 10^7}]; pp (* Robert G. Wilson v, Nov 03 2006 *)
-
PARI
S=[];print1(p=2);forprime(q=1+p,,ispower(q-p)&& !setsearch(S,q-p)&& !print1(","p)&& S=setunion(S,[q-p]);p=q) \\ M. F. Hasler, Oct 18 2018
Formula
Previous prime before A123996.
Extensions
Edited and extended by Robert G. Wilson v, Nov 03 2006 and corrected Nov 04 2006
Better definition from M. F. Hasler, Oct 18 2018
Comments