This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124051 #12 Feb 07 2025 16:35:17 %S A124051 3,6,8,10,30,15,15,80,90,24,21,175,350,210,35,28,336,1050,1120,420,48, %T A124051 36,588,2646,4410,2940,756,63,45,960,5880,14112,14700,6720,1260,80,55, %U A124051 1485,11880,38808,58212,41580,13860,1980,99,66,2200,22275,95040,194040,199584,103950,26400,2970,120 %N A124051 Quasi-mirror of A062196 formatted as a triangular array. %H A124051 G. C. Greubel, <a href="/A124051/b124051.txt">Rows n = 0..50 of the triangle, flattened</a> %F A124051 From _G. C. Greubel_, Feb 07 2025: (Start) %F A124051 T(n, k) = binomial(n+1, n-k+1)*binomial(n+3, n-k+1). %F A124051 T(2*n, n) = (1/2)*A000894(n) + (5/2)*[n=0]. %F A124051 Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*( (1+(-1)^n)*(-1)^(n/2)*A286033((n+4)/2) + (1-(-1)^n)*((-1)^((n+1)/2)*A000108((n+1)/2) - 1) ). (End) %e A124051 Triangle begins as: %e A124051 3; %e A124051 6, 8; %e A124051 10, 30, 15; %e A124051 15, 80, 90, 24; %e A124051 21, 175, 350, 210, 35; %e A124051 28, 336, 1050, 1120, 420, 48; %e A124051 36, 588, 2646, 4410, 2940, 756, 63; %e A124051 45, 960, 5880, 14112, 14700, 6720, 1260, 80; %e A124051 55, 1485, 11880, 38808, 58212, 41580, 13860, 1980, 99; %e A124051 66, 2200, 22275, 95040, 194040, 199584, 103950, 26400, 2970, 120; %p A124051 for n from 0 to 10 do seq(binomial(n,i-1)*binomial(n+2,n+1-i), i=1..n ) od; %t A124051 A124051[n_, k_]:= Binomial[n+1,n-k+1]*Binomial[n+3,n-k+1]; %t A124051 Table[A124051[n,k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 07 2025 *) %o A124051 (Magma) %o A124051 A124051:= func< n,k | Binomial(n+1,n-k+1)*Binomial(n+3,n-k+1) >; %o A124051 [A124051(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 07 2025 %o A124051 (SageMath) %o A124051 def A124051(n,k): return binomial(n+1,n-k+1)*binomial(n+3,n-k+1) %o A124051 print(flatten([[A124051(n,k) for k in range(n+1)] for n in range(13)])) # _G. C. Greubel_, Feb 07 2025 %Y A124051 Cf. A000108, A000894, A062196, A286033. %Y A124051 Columns k: A000217(n+2) (k=0), A002417(n+1) (k=1), A001297(n) (k=2), A105946(n-2) (k=3), A105947(n-3) (k=4), A105948(n-4) (k=5), A107319(n-5) (k=6). %Y A124051 Diagonals: A005563(n+1) (k=n), A033487(n) (k=n-1), A027790(n) (k=n-2), A107395(n-3) (k=n-3), A107396(n-4) (k=n-4), A107397(n-5) (k=n-5), A107398(n-6) (k=n-6), A107399(n-7) (k=n-7). %Y A124051 Sums: A322938(n+1) (row). %K A124051 nonn,tabl,easy %O A124051 0,1 %A A124051 _Zerinvary Lajos_, Nov 03 2006