This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124059 #40 Feb 16 2025 08:33:03 %S A124059 1,0,0,0,0,8,144,3552,131452,7840396,797524380,143325597564 %N A124059 Number of connected asymmetric graphs with n nodes. %C A124059 A graph possessing only a single automorphism is called an identity or asymmetric graph, |Aut(g)|=1. - _Travis Hoppe_, Apr 27 2014 %H A124059 C. O. Aguilar and B. Gharesifard, <a href="https://www.semanticscholar.org/paper/Graph-Controllability-Classes-for-the-Laplacian-Le-Aguilar-Gharesifard/28eaad27dffe1d2319cd1df96a91d89ac38810f6">Graph Controllability Classes for the Laplacian Leader-Follower Dynamics</a>, 2014. See Table 1. %H A124059 Ernesto Estrada, <a href="https://hal.science/hal-04169459">Communicability cosine distance: similarity and symmetry in graphs/networks</a>, hal-04169459 [math], 2023. See p. 22. %H A124059 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a> %H A124059 Yoav Spector, Moshe Schwartz, <a href="https://arxiv.org/abs/1808.05632">Study of potential Hamiltonians for quantum graphity</a>, arXiv:1808.05632 [cond-mat.stat-mech], 2018. %H A124059 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphAutomorphism.html">Graph Automorphism</a> %H A124059 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IdentityGraph.html">Identity Graph</a> %H A124059 Myung-Gon Yoon, Peter Rowlinson, Dragos Cvetkovic, and Zoran Stanic, <a href="https://doi.org/10.1002/asjc.793">Controllability of multi-agent dynamical systems with a broadcasting control signal</a>, Asian J. Control 16 (4) (2014) 1066-1072, Table 1 %F A124059 Inverse WEIGH transform of A003400 (see Transforms link). %F A124059 a(n) = A003400(n) - A275867(n). %Y A124059 Cf. A003400 (not-necessarily connected simple asymmetric graphs). %Y A124059 Cf. A275867 (disconnected simple asymmetric graphs). %Y A124059 Cf. Values of |Aut(g)| for simple connected graphs, A124059, A241454, A241455, A241456, A241457, A241458, A241459, A241460, A241461, A241462, A241463, A241464, A241465, A241466, A241467, A241468, A241469, A241470, A241471. %K A124059 hard,more,nonn %O A124059 1,6 %A A124059 _Franklin T. Adams-Watters_, Nov 03 2006 %E A124059 a(12) from _Alois P. Heinz_, Jun 11 2018