A124064 Table read by rows: T(d,k) (d >= 1, k >= 1) = smallest prime p of k (not necessarily consecutive) primes in arithmetic progression with common difference d.
2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 5, 5, 5, 5, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 5, 5, 5, 5, 2, 2, 3, 3, 2, 2, 2, 3, 2, 2, 2, 5, 5, 5, 2, 2, 3, 3, 2, 2, 2, 7, 2, 2, 5, 5, 59, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 2, 7, 7, 7, 7, 7, 2, 2, 5, 2, 2, 3, 3, 2, 2, 2, 5, 7, 31, 2, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 2, 5, 5, 5, 5
Offset: 1
Examples
Table begins: d \k|..1..2..3..4..5.. ----+----------------- ..1.|..2..2 ..2.|..2..3..3 ..3.|..2..2 ..4.|..2..3..3 ..5.|..2..2 ..6.|..2..5..5..5..5 ..7.|..2 ..8.|..2..3..3 ..9.|..2..2 .10.|..2..3..3 .11.|..2..2 .12.|..2..5..5..5..5 .13.|..2 .14.|..2..3..3 .15.|..2..2 .16.|..2..3 .17.|..2..2 .18.|..2..5..5..5 .19.|..2 .20.|..2..3..3 T(24,4) = 59 since (59,83,107,131) is the first A.P. of 4 primes with difference 24.
Links
- R. J. Mathar, Table for d <= 1000 (PDF)
Crossrefs
Formula
T(n,1) = 2.
lim n->inf (a(n)/n) = SUM(p prime; (p-1)/(#(p-1)) = 2.92005097731613471209+
Extensions
Edited by David W. Wilson, Nov 05 2006 and Nov 25 2006