cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124118 Decimal expansion of Sum_{i>=0} A004018(i)/2^i.

Original entry on oeis.org

4, 5, 3, 2, 3, 7, 2, 0, 1, 4, 2, 5, 8, 9, 7, 4, 1, 0, 0, 8, 2, 7, 9, 5, 7, 1, 7, 8, 6, 6, 0, 4, 7, 1, 1, 9, 3, 5, 5, 7, 2, 2, 9, 3, 2, 6, 0, 8, 7, 8, 8, 7, 4, 1, 0, 0, 6, 7, 7, 3, 4, 8, 9, 4, 5, 6, 8, 5, 7, 7, 4, 7, 0, 0, 8, 3, 4, 2, 8, 5, 5, 1, 9, 5, 9, 0, 9
Offset: 1

Views

Author

R. J. Mathar, Nov 25 2006

Keywords

Examples

			4.532372014258974100827957178...
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press, 6 ed., 2008, section 17.10, p. 340.

Crossrefs

Cf. A004018.

Programs

  • Mathematica
    Clear[s]; s[n_] := s[n] = RealDigits[ Sum[ SquaresR[2, k]/2^k, {k, 0, n}], 10, 29] // First; s[n=100]; While[s[n] != s[n-100], n = n+100]; s[n] (* Jean-François Alcover, Feb 13 2013 *)
    RealDigits[1 + 4*Sum[(-1)^n/(2^(2*n + 1) - 1), {n, 0, 200}], 10, 100][[1]] (* Amiram Eldar, Jun 22 2020 *)

Formula

Sum_{i>=0} A004018(i)/2^i.
Bailey et al. point out the approximation Pi*(1+2*exp(-Pi^2/log(2))^2)/log(2), correct up to 23 decimal places. - Jean-François Alcover, Jun 27 2015
Equals 1 + 4 * Sum_{k>=0} (-1)^k/(2^(2*k+1) - 1). - Amiram Eldar, Jun 22 2020