A124142 Abundant numbers k such that sigma(k) is a perfect power.
66, 70, 102, 210, 282, 364, 400, 510, 642, 690, 714, 770, 820, 930, 966, 1080, 1092, 1146, 1164, 1200, 1416, 1566, 1624, 1672, 1782, 2130, 2226, 2250, 2346, 2460, 2530, 2586, 2652, 2860, 2910, 2912, 3012, 3198, 3210, 3340, 3498, 3522, 3560, 3710, 3810
Offset: 1
Keywords
Examples
a(1) = 66 since sigma(66) = 144 = 12^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory); egcd := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); return igcd(op(L)) else return 1 fi; end; L:=[]: for w to 1 do for n from 1 to 10000 do s:=sigma(n); if s>2*n and egcd(s)>1 then print(n,s,ifactor(s)); L:=[op(L),n]; fi od od;
-
Mathematica
filterQ[n_] := With[{s = DivisorSigma[1, n]}, s > 2n && GCD @@ FactorInteger[s][[All, 2]] > 1]; Select[Range[4000], filterQ] (* Jean-François Alcover, Sep 16 2020 *)
-
PARI
is(k) = {my(s = sigma(k)); s > 2*k && ispower(s);} \\ Amiram Eldar, Aug 02 2024
Comments