A124144 Perfect powers pp such that sigma(k) = pp for some abundant number k.
144, 216, 576, 784, 961, 1296, 1728, 1764, 2304, 2744, 3136, 3600, 3844, 4356, 5184, 6084, 7056, 7776, 8100, 9216, 11664, 12544, 13824, 14400, 15376, 15876, 17424, 19600, 20736, 21952, 24336, 27000, 28224, 32400, 34596, 36864, 38416, 39204, 41616, 44100, 46656, 50176
Offset: 1
Keywords
Examples
a(1) = 144 since sigma(66) = 144 > 2*66 = 132.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory); egcd := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); return igcd(op(L)) else return 1 fi; end; L:=[]: P:={}: for w to 1 do for n from 1 to 10000 do s:=sigma(n); if s>2*n and egcd(s)>1 then print(n,s,ifactor(s)); L:=[op(L),n]; P:=P union {s}; fi od od; L; P;
-
Mathematica
ppQ[n_] := GCD @@ FactorInteger[n][[;; , 2]] > 1; f[n_] := Module[{s = DivisorSigma[1, n]}, If[s > 2*n, s, Nothing]]; seq[max_] := Union[Select[Array[f, max], # < max && ppQ[#] &]]; seq[60000] (* Amiram Eldar, Mar 11 2024 *)
Extensions
a(32) inserted and more terms added by Amiram Eldar, Mar 11 2024