cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124144 Perfect powers pp such that sigma(k) = pp for some abundant number k.

Original entry on oeis.org

144, 216, 576, 784, 961, 1296, 1728, 1764, 2304, 2744, 3136, 3600, 3844, 4356, 5184, 6084, 7056, 7776, 8100, 9216, 11664, 12544, 13824, 14400, 15376, 15876, 17424, 19600, 20736, 21952, 24336, 27000, 28224, 32400, 34596, 36864, 38416, 39204, 41616, 44100, 46656, 50176
Offset: 1

Views

Author

Walter Kehowski, Dec 01 2006

Keywords

Examples

			a(1) = 144 since sigma(66) = 144 > 2*66 = 132.
		

Crossrefs

Programs

  • Maple
    with(numtheory); egcd := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); return igcd(op(L)) else return 1 fi; end; L:=[]: P:={}: for w to 1 do for n from 1 to 10000 do s:=sigma(n); if s>2*n and egcd(s)>1 then print(n,s,ifactor(s)); L:=[op(L),n]; P:=P union {s}; fi od od; L; P;
  • Mathematica
    ppQ[n_] := GCD @@ FactorInteger[n][[;; , 2]] > 1;
    f[n_] := Module[{s = DivisorSigma[1, n]}, If[s > 2*n, s, Nothing]];
    seq[max_] := Union[Select[Array[f, max], # < max && ppQ[#] &]]; seq[60000] (* Amiram Eldar, Mar 11 2024 *)

Extensions

a(32) inserted and more terms added by Amiram Eldar, Mar 11 2024