cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A126283 Largest number k for which the n-th prime is the median of the largest prime dividing the first k integers.

Original entry on oeis.org

4, 18, 40, 76, 116, 182, 246, 330, 426, 532, 652, 770, 904, 1058, 1210, 1386, 1560, 1752, 1956, 2162, 2394, 2640, 2894, 3150, 3422, 3680, 3984, 4302, 4628, 4974, 5294, 5650, 5914, 6006, 6372, 6746, 7146, 7536, 7938, 8386, 8794, 9222, 9702, 10156
Offset: 1

Views

Author

Mark Thornquist (mthornqu(AT)fhcrc.org) & Robert G. Wilson v, Dec 15 2006

Keywords

Comments

a(14) = 1058 is the first term where a(n) exceeds A290154(n). - Peter Munn, Aug 02 2019

Examples

			a(1)=4 because the median of {2,3,2} = {2, *2*,3} is 2 (the * surrounds the median) and for any number greater than 4 the median is greater than 2.
a(1)=18 because the median of {2,3,2,5,3,7,2,3,5,11,3,13,7,5,2,17,3} = {2,2,2,2,3,3,3,3, *3*,5,5,5,7,7,11,13,17}.
		

Crossrefs

Other sequences about medians of prime factors: A124202, A126282, A281889, A284411, A290154, A308904.

Programs

  • Mathematica
    t = Table[0, {100}]; lst = {}; Do[lpf = FactorInteger[n][[ -1, 1]]; AppendTo[lst, lpf]; mdn = Median@lst; If[PrimeQ@ mdn, t[[PrimePi@mdn]] = n], {n, 2, 10^4}]; t

A126282 Median of the largest prime dividing the first 10^n numbers greater than 1.

Original entry on oeis.org

3, 11, 43, 191, 797, 3259, 13267, 54049, 219277, 887707
Offset: 1

Views

Author

Mark Thornquist (mthornqu(AT)fhcrc.org) and Robert G. Wilson v, Dec 15 2006

Keywords

Comments

A randomly selected number <= 10^n (uniform distribution from 2 to 10^n) has a 50% probability of having a prime factor at least as large as a(n).

Examples

			The largest prime divisors of the nonunit 1-digit numbers are 2, 3, 2, 5, 3, 7, 2 and 3 respectively, with median 3.
		

Crossrefs

Programs

  • Mathematica
    f[n_Integer(* n must be even so as to find a true median, not an average, and n must be greater than *)] := Block[{cnt, lmt = n/2, p = PrimePi[n/2], q = PrimePi[n]}, cnt = q - p; p--; While[cnt < lmt, cnt = cnt + Floor[n/Prime@ p]; p-- ]; p++; Prime@ p]; MapAt[# + 1 &, Reap[Do[Sow@ f[10^n], {n, 6}]][[-1, -1]], 1]
Showing 1-2 of 2 results.