A124232 Numbers n such that prime(n) and pi(n) are palindromic.
1, 2, 3, 4, 5, 26, 32, 36, 138, 3691, 6987, 7193, 86969, 117766, 127150, 142583, 515786, 531448, 539596, 615980, 646060, 17262354, 39816443, 47548105, 48803361, 49426747, 528977302, 538348374, 1475057753, 1559827952, 2994135736, 60040412496, 64516992534, 333771325433, 11655934712628, 21872729899659, 22903935103276, 28311805106395, 29606335619415
Offset: 1
Crossrefs
Subsequence of A075807 = numbers n such that n-th prime is palindromic.
Programs
-
Mathematica
NextPalindrome[n_] := Block[{lg = Floor@ Log[10, n] + 1, idn = IntegerDigits@n}, If[Union@ idn == {9}, Return[n + 2], If[lg < 2, Return[n + 1], If[ FromDigits@ Reverse@ Take[idn, Ceiling[lg/2]] > FromDigits@ Take[idn, -Ceiling[lg/2]], FromDigits@ Join[ Take[idn, Ceiling[lg/2]], Reverse@ Take[idn, Floor[lg/2]]], idfhn = FromDigits@ Take[idn, Ceiling[lg/2]] + 1; idp = FromDigits@ Join[IntegerDigits@ idfhn, Drop[ Reverse@ IntegerDigits@ idfhn, Mod[lg, 2]]] ]]]]; palQ[n_Integer] := Module[{idn = IntegerDigits@n}, idn == Reverse@ idn]; lst = {}; k = 1; While[k < 10^12, If[ PrimeQ@k && palQ@PrimePi@PrimePi@k, Print@PrimePi@k; AppendTo[lst, PrimePi@k]]; k = NextPalindrome@k]; lst (* Robert G. Wilson v *)
Extensions
a(22) - a(31) from Robert G. Wilson v, Dec 14 2006
a(32)-a(33) from Donovan Johnson, Jul 19 2012
a(34) from Chai Wah Wu, Sep 12 2019
a(35)-a(39) from Chai Wah Wu, Sep 19 2019