cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A130137 Number of Fibonacci binary words of length n having no 0110 subword. A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 16, 25, 37, 57, 85, 130, 195, 297, 447, 679, 1024, 1553, 2345, 3553, 5369, 8130, 12291, 18605, 28135, 42579, 64400, 97449, 147405, 223033, 337389, 510466, 772227, 1168337, 1767487, 2674063, 4045440, 6120353, 9259217, 14008193
Offset: 0

Views

Author

Emeric Deutsch, May 13 2007

Keywords

Examples

			a(4)=7 because from the 8 Fibonacci binary words of length 4 only 0110 does not qualify.
		

Crossrefs

Cf. A130136.

Programs

  • Maple
    a[0]:=1: a[1]:=2: a[2]:=3: a[3]:=5: for n from 4 to 45 do a[n]:=a[n-1]+a[n-2]-a[n-3]+a[n-4] od: seq(a[n],n=0..45);
  • Mathematica
    LinearRecurrence[{1, 1, -1, 1}, {1, 2, 3, 5}, 40] (* Jean-François Alcover, Aug 25 2021 *)

Formula

G.f.: (1+z+z^3)/(1-z-z^2+z^3-z^4).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4); a(0)=1, a(1)=2, a(2)=3, a(3)=5.
a(n) = A130136(n,0).
a(n) = A124280(n)+A124280(n-1)+A124280(n-3). - R. J. Mathar, Mar 14 2025

A124279 Riordan array (1/(1-x),x(1-x+x^2)/(1-x)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 5, 4, 1, 1, 1, 5, 8, 7, 5, 1, 1, 1, 6, 12, 13, 9, 6, 1, 1, 1, 7, 17, 22, 19, 11, 7, 1, 1, 1, 8, 23, 35, 35, 26, 13, 8, 1, 1, 1, 9, 30, 53
Offset: 0

Views

Author

Paul Barry, Oct 24 2006

Keywords

Comments

Row sums are A005314. Diagonal sums are A124280. T(2n,n) is A002426.
Reversal of A124445. - Paul Barry, Nov 01 2006

Examples

			Triangle begins
1,
1, 1,
1, 1, 1,
1, 2, 1, 1,
1, 3, 3, 1, 1,
1, 4, 5, 4, 1, 1,
1, 5, 8, 7, 5, 1, 1
		

Formula

Number triangle T(n,k)=sum{j=0..n-k, C(j,n-k-j)C(k,n-k-j)}

A124281 Expansion of 1/(1-x-2*x^2+2*x^3-2*x^4).

Original entry on oeis.org

1, 1, 3, 3, 9, 11, 29, 39, 93, 135, 301, 463, 981, 1575, 3213, 5327, 10565, 17943, 34845, 60255, 115189, 201895, 381453, 675375, 1264869, 2256503, 4198397, 7532415, 13945941, 25126983, 46350829, 83777743, 154117317, 279225111
Offset: 0

Views

Author

Paul Barry, Oct 24 2006

Keywords

Crossrefs

Cf. A124280.

Formula

a(n)=sum{k=0..floor(n/2), sum{j=0..n-2k, C(j,n-2k-j)C(k,n-2k-j)*2^k}}
Showing 1-3 of 3 results.