This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124286 #8 Dec 26 2017 23:30:30 %S A124286 0,0,0,0,0,1,1,4,7,15,25,46,72,113,172,248,360,491,686,896,1217,1536, %T A124286 2031,2504,3236,3905,4955,5880,7336,8586,10556,12208,14823,16964, %U A124286 20364,23106,27456,30906,36399,40692,47532,52816,61237,67672,77941,85701 %N A124286 Number of integer-sided hexagons having perimeter n. %C A124286 Rotations and reversals are counted only once. Note that this is different from A069907, which counts hexagons whose sides are nondecreasing. %H A124286 James East, Ron Niles, <a href="https://arxiv.org/abs/1710.11245">Integer polygons of given perimeter</a>, arXiv:1710.11245 [math.CO], 2017. %F A124286 Empirical g.f.: x^6*(x^13 +3*x^12 +6*x^11 +6*x^10 +10*x^9 +9*x^8 +12*x^7 +10*x^6 +8*x^5 +5*x^4 +4*x^3 +2*x^2 +x +1) / ((x -1)^6*(x +1)^5*(x^2 -x +1)*(x^2 +1)^2*(x^2 +x +1)^2). - _Colin Barker_, Oct 27 2013 %e A124286 The four hexagons having perimeter 8 are (1,1,1,1,2,2), (1,1,1,2,1,2), (1,1,2,1,1,2) and (1,1,1,1,1,3). %t A124286 Needs["DiscreteMath`Combinatorica`"]; Table[s=Select[Partitions[n], Length[ # ]==6 && #[[1]]<Total[Rest[ # ]]&]; cnt=0; Do[cnt=cnt+Length[ListNecklaces[6,s[[i]],Dihedral]], {i,Length[s]}]; cnt, {n,50}] %Y A124286 Cf. A057886 (quadrilaterals), A124285 (pentagons), A124287 (k-gons). %K A124286 nonn %O A124286 1,8 %A A124286 _T. D. Noe_, Oct 24 2006