This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124429 #11 Sep 17 2024 20:41:36 %S A124429 1,1,1,2,3,5,8,13,22,36,61,102,172,292,493,841,1429,2439,4169,7124, %T A124429 12216,20930,35940,61749,106155,182749,314638,542338,935195,1613593, %U A124429 2786037,4811920,8316435,14378247,24870062,43036264,74496224,129008514 %N A124429 Antidiagonal sums of triangle A124428. %H A124429 G. C. Greubel, <a href="/A124429/b124429.txt">Table of n, a(n) for n = 0..1000</a> %F A124429 a(n) = Sum_{k=0..[n/3]} C([(n-k)/2],k)*C([(n-k+1)/2],k). %t A124429 Table[Sum[Binomial[Floor[(n-k)/2], k]*Binomial[Floor[(n-k+1)/2], k], {k, 0, Floor[n/3]}], {n, 0, 40}] (* _G. C. Greubel_, Feb 24 2019 *) %o A124429 (PARI) a(n)=sum(k=0,n\3,binomial((n-k)\2,k)*binomial((n-k+1)\2,k)) %o A124429 (Magma) [(&+[Binomial(Floor((n-k)/2), k)*Binomial(Floor((n-k+1)/2), k): k in [0..Floor(n/3)]]): n in [0..40]]; // _G. C. Greubel_, Feb 24 2019 %o A124429 (Sage) [sum(binomial(floor((n-k)/2),k)*binomial(floor((n-k+1)/2),k) for k in (0..floor(n/3))) for n in (0..40)] # _G. C. Greubel_, Feb 24 2019 %Y A124429 Cf. A124428, A124430. %K A124429 nonn %O A124429 0,4 %A A124429 _Paul D. Hanna_, Oct 31 2006