This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124441 #26 Nov 01 2019 09:35:56 %S A124441 1,1,1,1,2,1,6,3,8,3,120,5,720,15,56,105,40320,35,362880,189,3200,945, %T A124441 39916800,385,9580032,10395,3203200,19305,87178291200,1001, %U A124441 1307674368000,2027025,65228800,2027025,4839284736,85085,6402373705728000,34459425,17827532800 %N A124441 a(n) = Product_{1<=k<=n/2, gcd(k,n)=1} k. %C A124441 a(n) divides A001783(n). - _M. F. Hasler_, Jul 23 2011 %H A124441 Alois P. Heinz, <a href="/A124441/b124441.txt">Table of n, a(n) for n = 1..800</a> %H A124441 J. B. Cosgrave and K. Dilcher, <a href="http://www.emis.de/journals/INTEGERS/papers/i39/i39.Abstract.html">Extensions of the Gauss-Wilson Theorem</a>, Integers: Electronic Journal of Combinatorial Number Theory, 8 (2008) %F A124441 a(n) = A001783(n)/A124442(n). - _M. F. Hasler_, Jul 23 2011 %e A124441 The positive integers which are <= 9/2 and which are coprime to 9 are 1, 2 and 4. So a(9) = 1*2*4 = 8. %p A124441 a:=proc(n) local b,k: b:=1: for k from 1 to floor(n/2) do if gcd(k,n)=1 then b:=b*k else b:=b fi od: b; end: seq(a(n),n=1..41); # _Emeric Deutsch_, Nov 03 2006 %t A124441 f[n_] := Times @@ Select[Range[Floor[n/2]], GCD[ #, n] == 1 &];Table[f[n], {n, 36}] (* _Ray Chandler_, Nov 12 2006 *) %o A124441 (PARI) A124441(n)=prod(k=2, n\2, k^(gcd(k, n)==1)) \\ _M. F. Hasler_, Jul 23 2011 %o A124441 (Sage) %o A124441 def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1) %o A124441 def A124441(n): return Gauss_factorial(n//2, n) %o A124441 [A124441(n) for n in (1..36)] # _Peter Luschny_, Oct 01 2012 %Y A124441 Cf. A124442, A001783. %K A124441 nonn %O A124441 1,5 %A A124441 _Leroy Quet_, Nov 01 2006 %E A124441 More terms from _Emeric Deutsch_, Nov 03 2006