This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124442 #28 Nov 01 2019 09:36:14 %S A124442 1,1,2,3,12,5,120,35,280,63,30240,77,665280,1287,16016,19305, %T A124442 518918400,2431,17643225600,46189,14780480,1322685,28158588057600, %U A124442 96577,4317650168832,58503375,475931456000,75218625,3497296636753920000,215441,202843204931727360000 %N A124442 a(n) = Product_{ceiling(n/2) <= k <= n, gcd(k,n)=1} k. %H A124442 Alois P. Heinz, <a href="/A124442/b124442.txt">Table of n, a(n) for n = 1..300</a> %H A124442 J. B. Cosgrave, K. Dilcher, <a href="http://www.emis.de/journals/INTEGERS/papers/i39/i39.Abstract.html"> Extensions of the Gauss-Wilson Theorem</a>, Integers: Electronic Journal of Combinatorial Number Theory, 8(2008) %F A124442 a(n) = A001783(n)/A124441(n). - _M. F. Hasler_, Jul 23 2011 %e A124442 The integers which are >= 9/2 and are <= 9 and which are coprime to 9 are 5, 7 and 8. So a(9) = 5*7*8 = 280. %p A124442 a:=proc(n) local b,k: b:=1: for k from ceil(n/2) to n do if gcd(k,n)=1 then b:=b*k else b:=b fi od: b; end: seq(a(n),n=1..33); # _Emeric Deutsch_, Nov 03 2006 %t A124442 f[n_] := Times @@ Select[Range[Ceiling[n/2], n], GCD[ #, n] == 1 &];Table[f[n], {n, 30}] (* _Ray Chandler_, Nov 12 2006 *) %o A124442 (PARI) A124442(n)=prod(k=(n+1)\2,n-1, k^(gcd(k, n)==1)) \\ _M. F. Hasler_, Jul 23 2011 %o A124442 (Sage) %o A124442 def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1) %o A124442 def A124442(n): return Gauss_factorial(n, n)/Gauss_factorial(n//2, n) %o A124442 [A124442(n) for n in (1..29)] # _Peter Luschny_, Oct 01 2012 %Y A124442 Cf. A124441. %K A124442 nonn %O A124442 1,3 %A A124442 _Leroy Quet_, Nov 01 2006 %E A124442 More terms from _Emeric Deutsch_, Nov 03 2006