This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124503 #23 Aug 04 2025 05:36:15 %S A124503 1,1,2,4,1,11,4,32,20,113,80,10,422,385,70,1788,1792,560,8015,9492, %T A124503 3360,280,39435,50640,23100,2800,204910,295020,147840,30800,1144377, %U A124503 1763300,1044120,246400,15400,6722107,11278410,7241520,2202200,200200,41877722 %N A124503 Triangle read by rows: T(n,k) is the number of set partitions of the set {1,2,...,n} (or of any n-set) containing k blocks of size 3 (0<=k<=floor(n/3)). %C A124503 Row n contains 1+floor(n/3) terms. Row sums yield the Bell numbers (A000110). T(n,0)=A124504(n). Sum(k*T(n,k), k=0..floor(n/3))=A105480(n+1). %H A124503 Alois P. Heinz, <a href="/A124503/b124503.txt">Rows n = 0..250, flattened</a> %F A124503 E.g.f.: G(t,z) = exp(exp(z)-1+(t-1)z^3/6). %e A124503 T(4,1)=4 because we have 1|234, 134|2, 124|3 and 123|4. %e A124503 Triangle starts: %e A124503 1; %e A124503 1; %e A124503 2; %e A124503 4, 1; %e A124503 11, 4; %e A124503 32, 20; %e A124503 113, 80, 10; %e A124503 422, 385, 70; %e A124503 ... %p A124503 G:=exp(exp(z)-1+(t-1)*z^3/6): Gser:=simplify(series(G,z=0,17)): for n from 0 to 14 do P[n]:=sort(n!*coeff(Gser,z,n)) od: for n from 0 to 14 do seq(coeff(P[n],t,k),k=0..floor(n/3)) od; # yields sequence in triangular form %p A124503 # second Maple program: %p A124503 with(combinat): %p A124503 b:= proc(n, i) option remember; expand(`if`(n=0, 1, %p A124503 `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!* %p A124503 b(n-i*j, i-1)*`if`(i=3, x^j, 1), j=0..n/i)))) %p A124503 end: %p A124503 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): %p A124503 seq(T(n), n=0..15); # _Alois P. Heinz_, Mar 08 2015 %t A124503 nn = 8; k = 3; Range[0, nn]! CoefficientList[Series[Exp[Exp[x] - 1 + (y - 1) x^k/k!], {x, 0, nn}], {x, y}] // Grid (* _Geoffrey Critzer_, Aug 26 2012 *) %Y A124503 Cf. A000110, A124504, A105480, A355144. %Y A124503 T(3n,n) gives A025035. %K A124503 nonn,tabf %O A124503 0,3 %A A124503 _Emeric Deutsch_, Nov 14 2006