cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124578 Define p(alpha,2) to be the number of H-conjugacy classes where H is an infant subgroup ( similar to Young subgroups of S_n) of type alpha of the hyperoctahedral group B_n. Then a(n) = sum p(alpha,2) where |alpha| = n and alpha has at most n parts.

Original entry on oeis.org

2, 16, 150, 1784, 25460
Offset: 1

Views

Author

Richard Bayley (r.t.bayley(AT)qmul.ac.uk), Nov 12 2006

Keywords

Comments

p((n,0),2) = A000712. B_n can also be thought of as the signed permutation group. B_3 acts on the alphabet {1,2,3,bar{1}, bar{2}, bar{3}}. An infant subgroup of type (2,1) will be the subgroup which stabilizes the sets {1,bar{1}, 2, bar{2}} and {3,bar{3}}.

Examples

			E.g p((2,1),2) = # H-conjugacy classes of B_3 where H = Inft((2,1)) isom B_2 times B_1 . Then a(3) = p((3),2) + p((2,1),2) + p((2,0,1),2) + p((1,2),2) + p((1,1,1),2)+ p((1,0,2),2)+ p((0,3),2) + p((0,2,1),2) + p((0,1,2),2) + p((0,0,3),2) =10 + 16 + 16 + 16 + 24 + 16 + 10 + 16 + 16 +10 = 150
		

References

  • Richard Bayley, Relative Character Theory and the Hyperoctahedral Group, Ph.D. thesis, Queen Mary College, University of London, to be published 2007.
  • Steve Donkin, Invariant functions on Matrices, Math. Proc. Camb. Phil. Soc. 113 (1993) 23-43.

Crossrefs

Formula

Let x = x_1x_2x_3... and x^alpha = x_1^(alpha_1)x_2^(alpha_2)x_3^(alpha_3).... Let Phi = set of all primitive necklaces. If b is a primitive necklace then C(b) = Content(b) = (beta_1, beta_2,beta_3,.....) where beta_i = the number of times i occurs in b. For example if b=[11233] then C(b) = (2,1,2). To generate the p(alpha,2) we do the following. sum_alpha p(alpha,2)x^alpha = prod_(b in Phi) prod_(k = 1)^infinity 1/(1- x^(C(b) times k ))^2 = prod_(b in Phi) prod_(k = 1)^infinity (1+ x^(k times C(b)) + x^(2k times C(b)) + x^(3k times C(b)) + ....)^2