This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124581 #15 Aug 14 2019 08:27:15 %S A124581 216,1000,1728,2744,5832,8000,10648,13824,17576,21952,27000,46656, %T A124581 64000,74088,85184,110592,125000,140608,157464,175616,216000,287496, %U A124581 314432,343000,373248,438976,474552,512000,592704,681472,729000,778688,884736 %N A124581 Abundant cubes. %C A124581 Abundant cubes can't be prime powers for obvious reasons. Hence all these numbers can be represented as a^3*b^3 for some coprime a and b. a^3*b^3 is the magic product of the following magic 3 X 3 multiplicative square: [a*b^2, 1, a^2*b; a^2, ab, b^2; b, a^2*b^2; a]. %H A124581 Amiram Eldar, <a href="/A124581/b124581.txt">Table of n, a(n) for n = 1..10000</a> %H A124581 Christian Boyer, <a href="http://www.multimagie.com/English/Multiplicative.htm">The smallest possible multiplicative magic squares</a>. %e A124581 216 is in the sequence because 216=6^3 and the sum of the proper divisors of 216 is 108+72+54+...+3+2+1 > 216. %p A124581 isA005101 := proc(n) if numtheory[sigma](n) > 2*n then RETURN(true) ; else RETURN(false) ; fi ; end : for n from 1 to 120 do if isA005101(n^3) then printf("%d,",n^3) ; fi ; od ; # _R. J. Mathar_, Jan 07 2007 %p A124581 with(numtheory): a:=proc(n) if sigma(n^3)>2*n^3 then n^3 else fi end: seq(a(n),n=1..110); # _Emeric Deutsch_, Jan 10 2007 %t A124581 Select[Range[100]^3, DivisorSigma[1, #] > 2# &] (* _Amiram Eldar_, Aug 14 2019 *) %Y A124581 Intersection of A000578 and A005101. %Y A124581 Cf. A111029 = magic products of 3 X 3 multiplicative magic squares. %K A124581 nonn %O A124581 1,1 %A A124581 _Tanya Khovanova_, Dec 27 2006 %E A124581 More terms from _R. J. Mathar_ and _Emeric Deutsch_, Jan 07 2007