This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124610 #30 Jan 01 2024 11:53:27 %S A124610 1,1,7,37,199,1069,5743,30853,165751,890461,4783807,25699957, %T A124610 138067399,741736909,3984819343,21407570533,115007491351,617852597821, %U A124610 3319277971807,17832095054677,95799031216999,514659346194349 %N A124610 a(n) = 5*a(n-1) + 2*a(n-2), n > 1; a(0) = a(1) = 1. %C A124610 Top left element of powers of the matrix [1,2;3,4]. %H A124610 G. C. Greubel, <a href="/A124610/b124610.txt">Table of n, a(n) for n = 0..1000</a> %H A124610 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,2). %F A124610 a(n)/a(n-1) tends to (sqrt(33) + 5)/2 = 5.37228132... - _Gary W. Adamson_, Mar 03 2008 %F A124610 G.f.: (1 - 4*x)/(1 - 5*x - 2*x^2). - _G. C. Greubel_, Oct 23 2019 %e A124610 a(5) = 1069 because [1,2;3,4]^5 = [1069,1558; 2337,3406]. %p A124610 seq(coeff(series((1-4*x)/(1-5*x-2*x^2), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Oct 23 2019 %t A124610 Table[MatrixPower[{{1, 2}, {3, 4}}, n][[1]][[1]], {n, 0, 30}] %t A124610 Transpose[NestList[Flatten[{Rest[#],ListCorrelate[{2,5},#]}]&, {1,1},40]][[1]] (* _Harvey P. Dale_, Mar 23 2011 *) %t A124610 LinearRecurrence[{5,2},{1,1},30] (* _Harvey P. Dale_, Jan 01 2014 *) %o A124610 (PARI) Vec((1-4*x)/(1-5*x-2*x^2) +O('x^30)) \\ _G. C. Greubel_, Oct 23 2019 %o A124610 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-4*x)/(1-5*x-2*x^2) )); // _G. C. Greubel_, Oct 23 2019 %o A124610 (Magma) [n le 2 select 1 else 5*Self(n-1) + 2*Self(n-2):n in [1..22]];// _Marius A. Burtea_, Oct 24 2019 %o A124610 (Sage) %o A124610 def A124610_list(prec): %o A124610 P.<x> = PowerSeriesRing(ZZ, prec) %o A124610 return P( (1-4*x)/(1-5*x-2*x^2) ).list() %o A124610 A124610_list(30) # _G. C. Greubel_, Oct 23 2019 %o A124610 (GAP) a:=[1,1];; for n in [3..30] do a[n]:=5*a[n-1]+2*a[n-2]; od; a; # _G. C. Greubel_, Oct 23 2019 %Y A124610 Cf. A100638. %K A124610 easy,nonn %O A124610 0,3 %A A124610 _Fredrik Johansson_, Dec 20 2006 %E A124610 Recurrence from _Gary W. Adamson_, Mar 03 2008