cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124668 Numbers that together with their prime factors contain every digit exactly once.

This page as a plain text file.
%I A124668 #13 Jun 05 2024 04:25:46
%S A124668 10968,28651,43610,48960,50841,65821,80416,90584
%N A124668 Numbers that together with their prime factors contain every digit exactly once.
%C A124668 The exponents in the prime factorization are not considered here. See A273260 for that variant, which contains, e.g., 26487 = 3^5 * 109 and 61054 = 2 * 7^3 * 89. - _M. F. Hasler_, May 28 2024
%e A124668 10968 = 2^3 * 3 * 457.
%p A124668 isA124668 := proc(n) local digs,digs2,f,fac,b ; digs := convert(n,base,10) ; f := ifactors(n)[2] ; for fac from 1 to nops(f) do b := op(1,op(fac,f)) ; digs := [op(digs),op(convert(b,base,10))] ; od ; digs2 := convert(digs,set) ; if nops(digs2) = 10 and nops(digs2)=nops(digs) then print(n,f) ; RETURN(true) ; else RETURN(false) ; fi ; end : A124668aux := proc(n,dleft) local i,nnxt,dnxt ; isA124668(n) : for i from 1 to nops(dleft) do nnxt := 10*n+op(i,dleft) ; dnxt := dleft minus {op(i,dleft)} ; if nops(dnxt) > 0 then A124668aux(nnxt,dnxt) ; fi ; od ; end : dleft := {0,1,2,3,4,5,6,7,8,9} : for i from 1 to 9 do dnxt := dleft minus {i} ; A124668aux(i,dnxt) : od : # _R. J. Mathar_, Jan 13 2007
%t A124668 Select[Range[2, 1000000], Sort[Join[IntegerDigits[ # ], Flatten[IntegerDigits[Transpose[FactorInteger[ # ]][[1]]]]]] == {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} &]
%o A124668 (PARI) is_A124668(n) = { vecsum([logint(f,10)+1 | f<-n=concat(factor(n)[,1], n)])==10 && #Set(concat([digits(f) | f<-n]))>9 }
%o A124668 L=List(); forvec(v=vector(5, i, [0, 9]), forperm(v, n, is_A124668(n=fromdigits(Vec(n)))&& listput(L, n)),2); A124668=Set(L) \\ _M. F. Hasler_, Jun 05 2024
%Y A124668 Cf. A273260: similar, but digits of exponents > 1 in the prime factorization are also taken into account.
%K A124668 base,fini,full,nonn
%O A124668 1,1
%A A124668 _Tanya Khovanova_, Dec 23 2006