cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124672 Oblong (promic) abundant numbers = abundant numbers of the form k(k+1).

Original entry on oeis.org

12, 20, 30, 42, 56, 72, 90, 132, 156, 210, 240, 272, 306, 342, 380, 420, 462, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1482, 1560, 1640, 1722, 1806, 1980, 2070, 2256, 2352, 2450, 2550, 2652, 2862, 2970, 3080, 3192, 3306
Offset: 1

Views

Author

Tanya Khovanova, Dec 27 2006

Keywords

Comments

Promic numbers are highly divisible, so most of them are abundant.

Examples

			56 is in the sequence because 56=7*8 and the sum of its divisors 1+2+4+7+8+14+28+56=120 > 2*56.
		

Crossrefs

Intersection of A002378 (oblong numbers) and A005101 (abundant numbers).
Cf. A077804 (deficient oblong numbers).

Programs

  • Maple
    with(numtheory): a:=proc(k) if sigma(k*(k+1))>2*k*(k+1) then k*(k+1) else fi end: seq(a(k),k=1..75); # Emeric Deutsch, Jan 01 2007
    isA005101 := proc(n) if numtheory[sigma](n) > 2*n then RETURN(true) ; else RETURN(false) ; fi ; end : for k from 1 to 80 do if isA005101(k*(k+1)) then printf("%d,",k*(k+1)) ; fi ; od ; # R. J. Mathar, Jan 07 2007
  • Mathematica
    s = {}; Do[ob = n*(n + 1); If[DivisorSigma[1, ob] > 2*ob, AppendTo[s, ob]], {n, 1, 100}]; s (* Amiram Eldar, Jun 07 2019 *)
  • PARI
    helper(n)=my(k=sqrtint(n)); if(k*(k+1)>n, k, k+1)
    list(lim)=my(v=List(),last=4/3,cur); forfactored(n=4,helper(lim\1), cur=sigma(n,-1); if(cur*last>2, listput(v, (n[1]-1)*n[1])); last=cur); Vec(v) \\ Charles R Greathouse IV, Mar 16 2022

Formula

If k > 2 is 0 or 2 mod 3, then k*(k+1) is in this sequence; the bounds n^2 < a(n) < (9/4)*n^2 + 6n + 4 can be derived from this. Probably a(n) ~ kn^2 with k near 1.496. - Charles R Greathouse IV, Mar 16 2022

Extensions

More terms from Emeric Deutsch, Jan 01 2007
More terms from R. J. Mathar, Jan 07 2007