A124696 Number of base-3 circular n-digit numbers with adjacent digits differing by 1 or less.
1, 3, 7, 15, 35, 83, 199, 479, 1155, 2787, 6727, 16239, 39203, 94643, 228487, 551615, 1331715, 3215043, 7761799, 18738639, 45239075, 109216787, 263672647, 636562079, 1536796803, 3710155683, 8957108167, 21624372015, 52205852195
Offset: 0
Links
- R. H. Hardin, Table of n, a(n) for n = 0..210 [uploaded by Georg Fischer, Apr 05 2021]
- Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, and Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
- Stephan Mertens, Domination Polynomials of the Grid, the Cylinder, the Torus, and the King Graph, arXiv:2408.08053 [math.CO], 2024. See p. 5.
- OEIS Wiki, Number of base k circular n-digit numbers with adjacent digits differing by d or less
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-1).
Programs
-
Maple
T := (n, k) -> `if`(n=0, 1, add((1 + 2*cos(j*Pi/(k + 1)))^n, j=1..k)): a := n -> simplify(T(n, 3)): seq(a(n), n=0..28); # Peter Luschny, Mar 28 2021
Formula
[Empirical] a(base,n) = a(base-1,n) + A002426(n+1) for base = 1..floor(n/2)+1.
a(n) = T(n,3) for n > 0, where T(n,k) = Sum_{j=1..k} (1 + 2*cos(j*Pi/(k + 1)))^n. - Peter Luschny, Aug 13 2012
From Colin Barker, Nov 26 2012: (Start)
a(n) = 1 + (1 - sqrt(2))^n + (1 + sqrt(2))^n for n > 0.
a(n) = 3*a(n-1) - a(n-2) - a(n-3) for n > 3.
G.f.: -(2*x^3 + x^2 - 1)/((x - 1)*(x^2 + 2*x - 1)). (End)
a(n) = A002203(n)+1, n>0. - R. J. Mathar, May 09 2023
Comments