This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124705 #18 Apr 30 2025 13:54:37 %S A124705 1,12,34,78,206,542,1468,4016,11110,30966,86864,244916,693536,1971072, %T A124705 5619466,16064438,46032790,132184022,380276272,1095828356,3162539596, %U A124705 9139382876,26444232046,76600376186,222113604712,644654567192 %N A124705 Number of base 12 circular n-digit numbers with adjacent digits differing by 1 or less. %C A124705 [Empirical] a(base,n)=a(base-1,n)+A002426(n+1) for base>=1.int(n/2)+1. %C A124705 a(n) = T(n, 12) where T(n, k) = Sum_{j=1..k} (1+2*cos(j*Pi/(k+1)))^n. These are the number of smooth cyclic words of length n over the alphabet {1,2,..,12}. See theorem 3.3 in Knopfmacher and others, reference in A124696. - _Peter Luschny_, Aug 13 2012 %H A124705 OEIS Wiki, <a href="/wiki/Number_of_base_k_circular_n-digit_numbers_with_adjacent_digits_differing_by_d_or_less">Number of base k circular n-digit numbers with adjacent digits differing by d or less</a> %F A124705 G.f.: (1 - 55*x^2 + 220*x^3 - 135*x^4 - 672*x^5 + 1050*x^6 + 216*x^7 - 1015*x^8 + 160*x^9 + 270*x^10 - 40*x^11 - 11*x^12) / ((1 - 5*x + 5*x^2 + 6*x^3 - 7*x^4 - 2*x^5 + x^6)*(1 - 7*x + 15*x^2 - 6*x^3 - 11*x^4 + 6*x^5 + x^6)) (conjectured). - _Colin Barker_, Jul 17 2017 %o A124705 (S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-1](($[i]`-$[(i+1)mod N]`>1)+($[(i+1)mod N]`-$[i]`>1)) %K A124705 nonn,base %O A124705 0,2 %A A124705 _R. H. Hardin_, Dec 28 2006