cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124744 Expansion of (1+x*y)/(1-x^2*y^2+x^3*y^2).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, -1, 1, 0, 0, 0, -1, 1, 0, 0, 0, 0, -2, 1, 0, 0, 0, 0, 1, -2, 1, 0, 0, 0, 0, 0, 1, -3, 1, 0, 0, 0, 0, 0, 0, 3, -3, 1, 0, 0, 0, 0, 0, 0, -1, 3, -4, 1, 0, 0, 0, 0, 0, 0, 0, -1, 6, -4, 1, 0, 0, 0, 0, 0, 0, 0, 0, -4, 6, -5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -4, 10, -5, 1
Offset: 0

Views

Author

Paul Barry, Nov 06 2006

Keywords

Examples

			Triangle begins
  1,
  0, 1,
  0, 0, 1,
  0, 0, -1, 1,
  0, 0, 0, -1, 1,
  0, 0, 0, 0, -2, 1,
  0, 0, 0, 0, 1, -2, 1,
  0, 0, 0, 0, 0, 1, -3, 1,
  0, 0, 0, 0, 0, 0, 3, -3, 1,
  0, 0, 0, 0, 0, 0, -1, 3, -4, 1,
  0, 0, 0, 0, 0, 0, 0, -1, 6, -4, 1
		

Crossrefs

Cf. A124745 (row sums), A124746 (diagonal sums), A124747 (inverse).

Programs

  • Mathematica
    Table[(-1)^(n-k)*Binomial[Floor[k/2], n-k], {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Aug 27 2024 *)

Formula

T(n,k) = binomial(floor(k/2),n-k)*(-1)^(n-k)
Column k has g.f. x^k*(1-x)^floor(k/2). - Paul Barry, Feb 01 2007