This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124753 #61 Jul 20 2025 15:02:18 %S A124753 1,1,1,1,2,3,4,9,15,22,52,91,140,340,612,969,2394,4389,7084,17710, %T A124753 32890,53820,135720,254475,420732,1068012,2017356,3362260,8579560, %U A124753 16301164,27343888,70068713,133767543,225568798,580034052,1111731933,1882933364,4855986044,9338434700 %N A124753 a(3n+k) = (k+1)*binomial(4n+k, n)/(3n+k+1), where k is n reduced mod 3. %C A124753 Row sums of Riordan array (1,x(1-x^3))^(-1). Also row sums of A124752. %C A124753 a(n) is the number of ordered trees (A000108) with n vertices in which every non-leaf non-root vertex has exactly two children that are leaves. For example, a(4) counts the 2 trees %C A124753 \ / %C A124753 | and \|/ . - _David Callan_, Aug 22 2014 %H A124753 J.-B. Priez and A. Virmaux, <a href="http://arxiv.org/abs/1411.4161">Non-commutative Frobenius characteristic of generalized parking functions: Application to enumeration</a>, arXiv:1411.4161 [math.CO], 2014-2015. %F A124753 a(3n) = A002293(n), a(3n+1) = A069271(n), a(3n+2) = A006632(n+1). %F A124753 a(n) = ((mod(n,3)+1)*C(4*floor(n/3)+mod(n,3), floor(n/3))/ (3*floor(n/3) + 1 + mod(n, 3))). - _Paul Barry_, Dec 14 2006 %F A124753 G.f. satisfies: A(x) = 1 + x*A(x)^2*A(w*x)*A(w^2*x), where w = exp(2*Pi*I/3). - _Paul D. Hanna_, Jun 04 2012 %F A124753 G.f. satisfies: A(x) = 1 + x*A(x)*G(x^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. - _Paul D. Hanna_, Jun 04 2012 %F A124753 Conjecture: +8019*n*(n-1)*(n+1)*a(n) +17496*n*(n-1)*(n-3)*a(n-1) +2592*(3*n-5)*(n-1)*(3*n-16)*a(n-2) +216*(-224*n^3+48*n^2+3926*n-6331)*a(n-3) +576*(-288*n^3+2448*n^2-6558*n+5443)*a(n-4) +768*(-288*n^3+3600*n^2-14878*n+20375)*a(n-5) -8192*(4*n-23)*(2*n-11)*(4*n-21)*a(n-6)=0. - _R. J. Mathar_, Oct 30 2014 %F A124753 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/3)} a(3*k) * a(n-1-3*k). - _Seiichi Manyama_, Jul 07 2025 %p A124753 A124753 := proc(n) %p A124753 local k,np; %p A124753 k := modp(n,3) ; %p A124753 np := floor(n/3) ; %p A124753 (k+1)*binomial(np+n,np)/(n+1) ; %p A124753 end proc: %p A124753 seq(A124753(n),n=0..40) ; # _R. J. Mathar_, Oct 30 2014 %t A124753 a[n_] := Module[{q, k}, {q, k} = QuotientRemainder[n, 3]; (k+1)*Binomial[4q + k, q]/(3q + k + 1)]; %t A124753 Table[a[n], {n, 0, 34}] (* _Jean-François Alcover_, Nov 20 2017 *) %o A124753 (PARI) {a(n)=local(A=1+x); for(i=1,n,A=1+x*A*exp(sum(m=1,n\3,3*polcoeff(log(A+x*O(x^n)),3*m)*x^(3*m))+x*O(x^n))); polcoeff(A,n)} \\ _Paul D. Hanna_, Jun 04 2012 %o A124753 (PARI) apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r); %o A124753 a(n) = apr(n\3, 4, n%3+1); \\ _Seiichi Manyama_, Jul 20 2025 %Y A124753 Cf. A084080, A002293, A069271 (trisection), A006632 (trisection). %Y A124753 Cf. A047749, A118968. %K A124753 nonn,easy %O A124753 0,5 %A A124753 _Paul Barry_, Nov 06 2006