cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124779 a(n) = gcd(A(n), A(n+2))/gcd(d(n), d(n+2)) where A(n) = Sum_{k=0..n} n!/k! and d(n) = gcd(A(n), n!).

Original entry on oeis.org

1, 2, 5, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 37, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Jonathan Sondow, Nov 07 2006

Keywords

Comments

The next term > 1 is a(460) = 463. The primes 2, 5, 13, 37, 463 are the only terms > 1 up to n = 600000. If a(n) > 1 with n > 1, then a(n) = n+3 is prime. This uses A(n+2) = (n+2)(n+1)*A(n) + n+3. The terms > 1 are A064384 = primes p such that p divides 0!-1!+2!-3!+...+(-1)^{p-1}(p-1)!. The proof uses (n-1)!/(n-k-1)! = (n-1)(n-2)...(n-k) == (-1)^k k! (mod n). Cf. Cloitre's comment in A064383.
An integer p > 1 is in the sequence if and only if p is prime and p|A(p-1), where A(0) = 1 and A(n) = n*A(n-1)+1 for n > 0. - Jonathan Sondow, Dec 22 2006
Michael Mossinghoff has calculated that there are only five primes in the sequence up to 150 million. Heuristics suggest it contains infinitely many. - Jonathan Sondow, Jun 12 2007

Examples

			a(2) = gcd(A(2), A(4))/gcd(d(2), d(4)) = gcd(5, 65)/gcd(1, 1) = 5/1 = 5.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 3rd edition, 2004, B43.

Crossrefs

A(n) = A000522, d(n) = A093101, gcd(A(n), A(n+2)) = A124780, gcd(d(n), d(n+2)) = A124781, (n+3)/gcd(A(n), A(n+2)) = A124782, (n+3)/gcd(d(n), d(n+2)) = A123901. Cf. A061354, A061355, A123899, A123900.
Cf. A129924.

Programs

  • Mathematica
    (A[n_] := Sum[n!/k!, {k, 0, n}]; d[n_] := GCD[A[n],n! ]; Table[GCD[A[n],A[n+2]]/GCD[d[n],d[n+2]], {n,0,100}])
  • PARI
    A124779(n)={my(An=A000522(n),A2=A000522(n+2));gcd(An, A2)/gcd([An,n!,A2,(n+2)!])} \\ M. F. Hasler, Jun 04 2019

Formula

a(n) = A124780(n)/A124781(n) = A124782(n)/A123901(n).
a(n) = gcd(A(n), A(n+2))/gcd(A(n), A(n+2), n!) where A(n)=1+n+n(n-1)+...+n!. - Jonathan Sondow, Nov 10 2006
a(n) = gcd(N(n), N(n+2)), where N(n) = A061354(n) = numerator of Sum[1/k!,{k,0,n}]. - Jonathan Sondow, Jun 12 2007