cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124794 Coefficients of incomplete Bell polynomials in the prime factorization order.

This page as a plain text file.
%I A124794 #35 Feb 16 2025 08:33:03
%S A124794 1,1,1,1,1,3,1,1,3,4,1,6,1,5,10,1,1,15,1,10,15,6,1,10,10,7,15,15,1,60,
%T A124794 1,1,21,8,35,45,1,9,28,20,1,105,1,21,105,10,1,15,35,70,36,28,1,105,56,
%U A124794 35,45,11,1,210,1,12,210,1,84,168,1,36,55,280,1,105,1,13,280,45,126,252,1
%N A124794 Coefficients of incomplete Bell polynomials in the prime factorization order.
%C A124794 Coefficients of (D^k f)(g(t))*(D g(t))^k1*(D^2 g(t))^k2*... in the Faa di Bruno formula for D^m(f(g(t))) where k = k1 + k2 + ..., m = 1*k1 + 2*k2 + ....
%C A124794 Number of set partitions whose block sizes are the prime indices of n (i.e., the integer partition with Heinz number n). - _Gus Wiseman_, Sep 12 2018
%H A124794 Alois P. Heinz, <a href="/A124794/b124794.txt">Table of n, a(n) for n = 1..20000</a>
%H A124794 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>
%H A124794 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FaadiBrunosFormula.html">FaĆ  di Bruno's Formula</a>
%F A124794 For n = p1^k1*p2^k2*... where 2 = p1 < p2 < ... are the sequence of all primes, a(n) = a([k1,k2,...]) = (k1+2*k2+...)!/((k1!*k2!*...)*(1!^k1*2!^k2*...)).
%F A124794 a(2*prime(n)) = n + 1, for n > 1. See A065475. - _Bill McEachen_, Oct 11 2023
%e A124794 The a(6) = 3 set partitions of type (2,1) are {{1},{2,3}}, {{1,3},{2}}, {{1,2},{3}}. - _Gus Wiseman_, Sep 12 2018
%p A124794 with(numtheory):
%p A124794 a:= n-> (l-> add(i*l[i], i=1..nops(l))!/mul(l[i]!*i!^l[i],
%p A124794          i=1..nops(l)))([seq(padic[ordp](n, ithprime(i)),
%p A124794          i=1..pi(max(1, factorset(n))))]):
%p A124794 seq(a(n), n=1..100);  # _Alois P. Heinz_, Feb 14 2020
%t A124794 numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
%t A124794 Table[numSetPtnsOfType[If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,100}] (* _Gus Wiseman_, Sep 12 2018 *)
%o A124794 (PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, primepi(f[k,1])*f[k,2])!/(prod(k=1, #f~, f[k,2]!)*prod(k=1, #f~, primepi(f[k,1])!^f[k,2])); \\ _Michel Marcus_, Oct 11 2023
%Y A124794 Cf. A000110, A000258, A000670, A005651, A008277, A008480, A056239, A094416, A124794, A215366, A318762, A319182, A319225.
%Y A124794 Cf. A065475, A100484.
%K A124794 nonn
%O A124794 1,6
%A A124794 _Max Alekseyev_, Nov 07 2006