cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124795 Number of permutations with given cycle structure, in the prime factorization order.

This page as a plain text file.
%I A124795 #41 Apr 07 2025 23:39:17
%S A124795 1,1,1,1,2,3,6,1,3,8,24,6,120,30,20,1,720,15,5040,20,90,144,40320,10,
%T A124795 40,840,15,90,362880,120,3628800,1,504,5760,420,45,39916800,45360,
%U A124795 3360,40,479001600,630,6227020800,504,210,403200,87178291200,15,1260,280,25920
%N A124795 Number of permutations with given cycle structure, in the prime factorization order.
%C A124795 Number of permutations with k1 1-cycles, k2 2-cycles, ...
%H A124795 Gheorghe Coserea, <a href="/A124795/b124795.txt">Table of n, a(n) for n = 1..3000</a>
%H A124795 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PermutationCycle.html">Permutation cycle</a>
%F A124795 For n = p1^k1*p2^k2*... where 2=p1<p2<... is the sequence of all primes, a(n) = a([k1,k2,...]) = (k1+2*k2+...)!/((k1!*k2!*...)*(1^k1*2^k2*...)).
%t A124795 a[1] = 1; a[n_] := (f1 = FactorInteger[n]; rr = Range[PrimePi[f1[[-1, 1]]]]; f2 = {Prime[#], 0}& /@ rr; ff = Union[f1, f2] //. {b___, {p_, 0}, {p_, k_}, c___} -> {b, {p, k}, c}; kk = ff[[All, 2]]; (kk.rr)!/Times @@ (kk!)/Times @@ (rr^kk)); Array[a, 100] (* _Jean-François Alcover_, Feb 02 2018 *)
%o A124795 (PARI)
%o A124795 a(n) = {
%o A124795   my(f=factor(n), fsz=matsize(f)[1],
%o A124795      g=sum(k=1, fsz, primepi(f[k, 1]) * f[k, 2])!,
%o A124795      h=prod(k=1, fsz, primepi(f[k, 1])^f[k, 2]));
%o A124795   g/(prod(k=1, fsz, f[k, 2]!) * h);
%o A124795 };
%o A124795 vector(51, n, a(n)) \\ _Gheorghe Coserea_, Feb 02 2018; edited by _Max Alekseyev_, Feb 05 2018
%Y A124795 Cf. A000040.
%K A124795 nonn
%O A124795 1,5
%A A124795 _Max Alekseyev_, Nov 07 2006