cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124829 Table of exponents of prime factorizations in A055932.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 3, 1, 1, 1, 1, 5, 2, 2, 4, 1, 1, 3, 2, 1, 1, 6, 3, 2, 1, 2, 1, 5, 1, 2, 3, 3, 1, 1, 7, 4, 2, 1, 1, 2, 1, 4, 2, 2, 1, 6, 1, 1, 1, 1, 1, 3, 3, 4, 1, 1, 8, 1, 3, 1, 5, 2, 2, 1, 2, 2, 4, 3, 2, 1, 7, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 5, 1, 1, 1, 5, 9, 2, 3, 1, 6, 2, 3, 1, 2, 1, 2, 1, 1, 3, 4
Offset: 1

Views

Author

Keywords

Comments

This is an enumeration of all compositions. This sequence contains all finite sequences of positive integers.

Examples

			From _Michael De Vlieger_, Feb 06 2020: (Start)
Table begins:
   n   A055932(n+1)  row n
   ---------------------
   1    2            1;
   2    4            2;
   3    6            1, 1;
   4    8            3;
   5   12            2, 1;
   6   16            4;
   7   18            1, 2;
   8   24            3, 1;
   9   30            1, 1, 1;
  10   32            5;
  11   36            2, 2;
  12   48            4, 1;
  13   54            1, 3;
  14   60            2, 1, 1;
  15   64            6;
  ...  (End)
		

Crossrefs

Cf. A055932, A124830 (row lengths), A124831 (row sums), A124832, A066099.

Programs

  • Mathematica
    Map[FactorInteger[#][[All, -1]] &, Select[Range[10^3], Last[#] == Length[#] &@ PrimePi@ FactorInteger[#][[All, 1]] &]] // Flatten (* Michael De Vlieger, Feb 06 2020 *)

Formula

A055932(n) = Product_k Prime(k)^T(n,k).