This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124830 #27 May 08 2021 06:30:04 %S A124830 0,1,1,2,1,2,1,2,2,3,1,2,2,2,3,1,2,3,2,2,3,1,2,3,2,3,2,4,2,3,1,3,2,3, %T A124830 2,3,2,4,2,3,3,2,1,3,2,3,4,2,3,3,2,3,4,2,3,3,2,1,4,3,2,3,4,2,3,3,2,4, %U A124830 3,2,3,4,2,3,4,3,2,1,4,3,3,2,5,3,3,4,2,3,3,2,4,3,2,4,3,4,2,3,3,4,3,2,3,1,4 %N A124830 Number of distinct prime factors of A055932(n). %H A124830 Michael De Vlieger, <a href="/A124830/b124830.txt">Table of n, a(n) for n = 1..10000</a> (First 1000 terms from G. C. Greubel.) %F A124830 a(n) = A001221(A055932(n)). %t A124830 PrimeNu /@ Select[Range[4000], ! MemberQ[Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #, 0] &] (* _Michael De Vlieger_, Feb 02 2017 *) %t A124830 A055932[n_] := Module[{f = Transpose[FactorInteger[n]][[1]]}, f == {1} || f == Prime[Range[Length[f]]]]; PrimeNu[Select[Range[2000], A055932]] (* _G. C. Greubel_, May 11 2017 *) %o A124830 (Python) %o A124830 from sympy import nextprime, primefactors %o A124830 def a053669(n): %o A124830 p = 2 %o A124830 while True: %o A124830 if n%p!=0: return p %o A124830 else: p=nextprime(p) %o A124830 def ok(n): return True if n==1 else a053669(n)>max(primefactors(n)) %o A124830 print([len(primefactors(n)) for n in range(1, 10001) if ok(n)]) # _Indranil Ghosh_, May 11 2017 %Y A124830 Cf. A055932, A001221, A124829, A124831, A061394. %K A124830 nonn %O A124830 1,4 %A A124830 _Franklin T. Adams-Watters_, Nov 09 2006