This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124832 #22 Nov 21 2022 23:01:52 %S A124832 1,2,1,1,3,2,1,4,3,1,1,1,1,5,2,2,4,1,2,1,1,6,3,2,5,1,3,1,1,7,4,2,2,2, %T A124832 1,6,1,1,1,1,1,3,3,4,1,1,8,5,2,3,2,1,7,1,2,1,1,1,4,3,5,1,1,9,6,2,4,2, %U A124832 1,8,1,3,1,1,1,5,3,2,2,2,6,1,1,10,3,3,1,7,2,2,2,1,1,4,4,5,2,1,9,1,4,1,1,1,6 %N A124832 Table of exponents of prime factorizations in A025487. %C A124832 This is an enumeration of all partitions. %H A124832 Michael De Vlieger, <a href="/A124832/b124832.txt">Table of n, a(n) for n = 2..10820</a> (rows 2 <= n <= 2500, first 106 terms from Ray Chandler). %F A124832 A025487(n) = Product_{k=1..A061394(n)} prime(k)^T(n,k). [Edited by _M. F. Hasler_, Oct 12 2018] %e A124832 From _M. F. Hasler_, Oct 12 2018: (Start) %e A124832 The table starts as follows: %e A124832 n : signature (A025487(n) = factorization) %e A124832 1 : [] (1 = empty product) %e A124832 2 : [1] (2 = 2^1) %e A124832 3 : [2] (4 = 2^2) %e A124832 4 : [1, 1] (6 = 2^1 * 3^1) %e A124832 5 : [3] (8 = 2^3) %e A124832 6 : [2, 1] (12 = 2^2 * 3^1) %e A124832 7 : [4] (16 = 2^4) %e A124832 8 : [3,1] (24 = 2^3 * 3^1) %e A124832 9 : [1, 1, 1] (30 = 2^1 * 3^1 * 5^1) %e A124832 etc. (End) %t A124832 Map[FactorInteger[#][[All, -1]] &, Import["https://oeis.org/A025487/b025487.txt", "Data"][[2 ;; 48, -1]] ] // Flatten (* _Michael De Vlieger_, Feb 06 2020 *) %o A124832 (PARI) A124832_row(n)=factor(A025487(n))[,2] \\ _M. F. Hasler_, Oct 12 2018 %Y A124832 Cf. A025487, A036041 (row sums), A061394 (row lengths), A124829, A036036, A080577. %K A124832 nonn,tabf %O A124832 2,2 %A A124832 _Franklin T. Adams-Watters_, Nov 09 2006 %E A124832 Erroneous explanations in cross-references corrected by _M. F. Hasler_, Oct 12 2018