cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124833 A055932(n) divided by product of all primes less than the greatest prime factor of A055932(n).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 9, 12, 5, 32, 18, 24, 27, 10, 64, 36, 15, 48, 54, 20, 128, 72, 25, 81, 30, 96, 7, 108, 40, 256, 45, 144, 50, 162, 60, 192, 14, 216, 75, 80, 243, 512, 90, 288, 100, 21, 324, 120, 125, 384, 135, 28, 432, 150, 160, 486, 1024, 35, 180, 576, 200, 42, 648
Offset: 1

Views

Author

Keywords

Comments

Shifted right, this is a permutation of the positive integers.

Crossrefs

Programs

  • Mathematica
    Map[Times @@ MapIndexed[Prime[First@ #2]^#1 &, # - Append[ConstantArray[1, Length[#] - 1], 0]] &, Map[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #] &, Import["https://oeis.org/A055932/b055932.txt", "Data"][[1 ;; 64, -1]]]] (* Michael De Vlieger, Feb 06 2020, using b-file at A055932 *)

Formula

a(n) = A055932(n) / A034386(A006530(A055932(n))-1). If A055932(n) = Product_{i=1}^k Prime(k)^e_k (with the e_i's all nonzero, by definition), then a(n) = (Product_{i=1}^{k-1} Prime(k)^{e_k-1}) * Prime(k)^e_k.
a(1) = 1; a(n) = A055932(n) / A002110(n - 1). - Michael De Vlieger, Feb 06 2020