This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124836 #9 Jul 01 2017 07:37:05 %S A124836 1,2,11,184,10121,1911956,1277642344,3076635199744,27117951046505365, %T A124836 883613507047099010632,107474419453579127300333278, %U A124836 49091717449041719016035290742176,84772868574056134938044881265953518335,555628412000611011592987340845035908323617024,13889914561952086638362253697842716117160344082246744 %N A124836 Central terms of even-indexed rows in triangle A124834. %F A124836 G.f.: A(x) = [x^n] * Product_{k=0..n} 1/(1 - binomial(n,k)*x). %e A124836 a(0) = 1 = [x^0] 1/(1-x); %e A124836 a(1) = 2 = [x^1] 1/((1-x)(1-x)); %e A124836 a(2) = 11 = [x^2] 1/((1-x)(1-2x)(1-x)); %e A124836 a(3) = 184 = [x^3] 1/((1-x)(1-3x)(1-3x)(1-x)); %e A124836 a(4) = 10121 = [x^4] 1/((1-x)(1-4x)(1-6x)(1-4x)(1-x)); %e A124836 a(5) = 1911956 = [x^5] 1/((1-x)(1-5x)(1-10x)(1-10x)(1-5x)(1-x)); ... %t A124836 a[n_] := SeriesCoefficient[Product[1/(1 - Binomial[n, k]*x) , {k, 0, n}], {x, 0, n}]; %t A124836 Table[a[n], {n, 0, 14}] (* _Jean-François Alcover_, Jul 01 2017 *) %o A124836 (PARI) {a(n)=polcoeff(1/prod(j=0,n,1-binomial(n,j)*x +x*O(x^n)),n)} %Y A124836 Cf. A124834, A124835. %K A124836 nonn %O A124836 0,2 %A A124836 _Paul D. Hanna_, Nov 09 2006