A124839 Inverse binomial transform of the Moebius sequence {mu(k), k >= 1}, A008683.
1, -2, 2, -1, -2, 10, -30, 76, -173, 363, -717, 1363, -2551, 4797, -9189, 18015, -36008, 72725, -146930, 294423, -581758, 1130231, -2158552, 4061201, -7557522, 13983585, -25872679, 48115364, -90273986, 171186911, -328120527, 635014942, -1239093092, 2434924044
Offset: 1
Keywords
Examples
Given (1, -1, -1, 0, -1, ...), taking finite differences, we obtain the array whose left border is the present sequence. 1, -1, -1, 0, -1, 1, -1, ... -2, 0, 1, -1, 2, -2, ... 2, 1, -2, 3, -4, ... -1, -3, 5, -7, ... -2, 8, -12, ... 10, -20, ... -30, ...
Programs
-
Mathematica
a[n_] := Sum[(-1)^(n-k) * Binomial[n-1, k-1] * MoebiusMu[k], {k, 1, n}]; Array[a, 50] (* Amiram Eldar, Jun 01 2025 *)
Formula
For n >= 1, a(n) = Sum_{k=0..n-1} (-1)^(n-1-k)*binomial(n-1,k)*mu(k+1). - N. J. A. Sloane, Nov 23 2022
Extensions
More terms from Tilman Neumann, Dec 13 2008
Edited by N. J. A. Sloane, Nov 23 2022
More terms from Amiram Eldar, Jun 01 2025
Comments