This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124848 #15 Nov 11 2019 21:47:11 %S A124848 1,1,4,1,8,10,1,12,30,20,1,16,60,80,35,1,20,100,200,175,56,1,24,150, %T A124848 400,525,336,84,1,28,210,700,1225,1176,588,120,1,32,280,1120,2450, %U A124848 3136,2352,960,165,1,36,360,1680,4410,7056,7056,4320,1485,220,1,40,450,2400,7350 %N A124848 Triangle read by rows: T(n,k) = (k+1)*(k+2)*(k+3)*binomial(n,k)/6 (0 <= k <= n). %C A124848 Sum of entries in row n = (2^n/48)*(n+4)*(n^2 + 11n + 12) = A049612(n+1). %H A124848 Harvey P. Dale, <a href="/A124848/b124848.txt">Table of n, a(n) for n = 0..1000</a> %e A124848 Triangle starts: %e A124848 1; %e A124848 1, 4; %e A124848 1, 8, 10; %e A124848 1, 12, 30, 20; %e A124848 1, 16, 60, 80, 35; %e A124848 1, 20, 100, 200, 175, 56; %e A124848 1, 24, 150, 400, 525, 336, 84; %p A124848 T:=(n,k)->(k+1)*(k+2)*(k+3)*binomial(n,k)/6: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form %t A124848 Flatten[Table[(k+1)(k+2)(k+3) Binomial[n,k]/6,{n,0,10},{k,0,n}]] (* _Harvey P. Dale_, May 14 2012 *) %Y A124848 Cf. A000292, A049612. %K A124848 nonn,tabl %O A124848 0,3 %A A124848 _Gary W. Adamson_, Nov 10 2006 %E A124848 Edited by _N. J. A. Sloane_, Dec 02 2006