cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124888 Primes with prime number of only prime digits (i.e., 2, 3, 5, 7).

This page as a plain text file.
%I A124888 #26 Dec 14 2024 10:51:14
%S A124888 23,37,53,73,223,227,233,257,277,337,353,373,523,557,577,727,733,757,
%T A124888 773,22273,22277,22573,22727,22777,23227,23327,23333,23357,23537,
%U A124888 23557,23753,23773,25237,25253,25357,25373,25523,25537,25577,25733,27253,27277
%N A124888 Primes with prime number of only prime digits (i.e., 2, 3, 5, 7).
%H A124888 Michael S. Branicky, <a href="/A124888/b124888.txt">Table of n, a(n) for n = 1..10000</a>
%H A124888 József Bölcsföldi, György Birkás, and Miklós Ferenczi, <a href="http://www.ijmsi.org/Papers/Volume.5.Issue.2/B05020407.pdf">Bölcsföldi-Birkás-Ferenczi prime numbers (Full prime numbers)</a>, International Journal of Mathematics and Statistics Invention (IJMSI), Volume 5, Issue 2, February 2017, pp. 4-7.
%t A124888 Select[Prime[Range[3000]],ContainsOnly[IntegerDigits[#],{2,3,5,7}]&&PrimeQ[Length[IntegerDigits[#]]]&] (* _James C. McMahon_, Dec 14 2024 *)
%o A124888 (PARI) isok(p) = isprime(p) && (d=digits(p)) && isprime(#d) && vecmin(vector(#d, k, isprime(d[k]))); \\ _Michel Marcus_, Sep 21 2017
%o A124888 (Python)
%o A124888 from sympy import isprime, prime
%o A124888 from itertools import count, islice, product
%o A124888 def agen(): yield from filter(isprime, (int("".join(s)+e) for i in count(1) for s in product("2357", repeat=prime(i)-1) for e in "37"))
%o A124888 print(list(islice(agen(), 42))) # _Michael S. Branicky_, Jun 23 2022
%Y A124888 Cf. A019546, A120533.
%K A124888 nonn,base
%O A124888 1,1
%A A124888 _Lekraj Beedassy_, Nov 12 2006
%E A124888 Terms 773, 23753 inserted by _Georg Fischer_, Jun 23 2022