This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124888 #26 Dec 14 2024 10:51:14 %S A124888 23,37,53,73,223,227,233,257,277,337,353,373,523,557,577,727,733,757, %T A124888 773,22273,22277,22573,22727,22777,23227,23327,23333,23357,23537, %U A124888 23557,23753,23773,25237,25253,25357,25373,25523,25537,25577,25733,27253,27277 %N A124888 Primes with prime number of only prime digits (i.e., 2, 3, 5, 7). %H A124888 Michael S. Branicky, <a href="/A124888/b124888.txt">Table of n, a(n) for n = 1..10000</a> %H A124888 József Bölcsföldi, György Birkás, and Miklós Ferenczi, <a href="http://www.ijmsi.org/Papers/Volume.5.Issue.2/B05020407.pdf">Bölcsföldi-Birkás-Ferenczi prime numbers (Full prime numbers)</a>, International Journal of Mathematics and Statistics Invention (IJMSI), Volume 5, Issue 2, February 2017, pp. 4-7. %t A124888 Select[Prime[Range[3000]],ContainsOnly[IntegerDigits[#],{2,3,5,7}]&&PrimeQ[Length[IntegerDigits[#]]]&] (* _James C. McMahon_, Dec 14 2024 *) %o A124888 (PARI) isok(p) = isprime(p) && (d=digits(p)) && isprime(#d) && vecmin(vector(#d, k, isprime(d[k]))); \\ _Michel Marcus_, Sep 21 2017 %o A124888 (Python) %o A124888 from sympy import isprime, prime %o A124888 from itertools import count, islice, product %o A124888 def agen(): yield from filter(isprime, (int("".join(s)+e) for i in count(1) for s in product("2357", repeat=prime(i)-1) for e in "37")) %o A124888 print(list(islice(agen(), 42))) # _Michael S. Branicky_, Jun 23 2022 %Y A124888 Cf. A019546, A120533. %K A124888 nonn,base %O A124888 1,1 %A A124888 _Lekraj Beedassy_, Nov 12 2006 %E A124888 Terms 773, 23753 inserted by _Georg Fischer_, Jun 23 2022