A124944 Table, number of partitions of n with k as high median.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 3, 1, 1, 1, 1, 6, 4, 1, 1, 1, 1, 1, 8, 6, 3, 1, 1, 1, 1, 1, 11, 8, 5, 1, 1, 1, 1, 1, 1, 15, 11, 7, 3, 1, 1, 1, 1, 1, 1, 20, 15, 9, 5, 1, 1, 1, 1, 1, 1, 1, 26, 21, 12, 8, 3, 1, 1, 1, 1, 1, 1, 1, 35, 27, 16, 10, 5, 1, 1, 1, 1, 1, 1, 1, 1, 45, 37, 21, 13, 8, 3
Offset: 1
Examples
For the partition [2,1^2], the sole middle element is 1, so that is the high median. For [3,2,1^2], the two middle elements are 1 and 2; the high median is the larger, 2. From _Gus Wiseman_, Jul 12 2023: (Start) Triangle begins: 1 1 1 1 1 1 2 1 1 1 3 1 1 1 1 4 3 1 1 1 1 6 4 1 1 1 1 1 8 6 3 1 1 1 1 1 11 8 5 1 1 1 1 1 1 15 11 7 3 1 1 1 1 1 1 20 15 9 5 1 1 1 1 1 1 1 26 21 12 8 3 1 1 1 1 1 1 1 35 27 16 10 5 1 1 1 1 1 1 1 1 45 37 21 13 8 3 1 1 1 1 1 1 1 1 58 48 29 16 11 5 1 1 1 1 1 1 1 1 1 Row n = 8 counts the following partitions: (611) (521) (431) (44) (53) (62) (71) (8) (5111) (422) (332) (41111) (4211) (3311) (32111) (3221) (311111) (2222) (221111) (22211) (2111111) (11111111) (End)
Crossrefs
Programs
-
Mathematica
Map[BinCounts[#, {1, #[[1]] + 1, 1}] &[Map[#[[Floor[(Length[#] + 1)/2]]] &, IntegerPartitions[#]]] &, Range[13]] (* Peter J. C. Moses, May 14 2019 *)
Comments