This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124959 #12 Sep 08 2022 08:45:28 %S A124959 1,1,2,1,4,5,1,6,15,11,1,8,30,44,26,1,10,50,110,130,59,1,12,75,220, %T A124959 390,354,137,1,14,105,385,910,1239,959,314,1,16,140,616,1820,3304, %U A124959 3836,2512,725,1,18,180,924,3276,7434,11508,11304,6525,1667,1,20,225,1320,5460,14868,28770,37680,32625,16670,3842 %N A124959 Triangle read by rows: T(n,k) = a(k)*binomial(n,k) (0 <= k <= n), where a(0)=1, a(1)=2, a(k) = a(k-1) + 3*a(k-2) for k >= 2 (a(k) = A006138(k)). %C A124959 Sum of entries in row n = A006190(n+1). %H A124959 G. C. Greubel, <a href="/A124959/b124959.txt">Rows n = 0..100 of triangle, flattened</a> %e A124959 First few rows of the triangle: %e A124959 1; %e A124959 1, 2; %e A124959 1, 4, 5; %e A124959 1, 6, 15, 11; %e A124959 1, 8, 30, 44, 26; %e A124959 1, 10, 50, 110, 130, 59; %e A124959 ... %p A124959 a:=proc(n) if n=0 then 1 elif n=1 then 2 else a(n-1)+3*a(n-2) fi end: T:=(n,k)->a(k)*binomial(n,k): for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form %t A124959 T[n_, k_]:= T[n, k]= Simplify[(I*Sqrt[3])^(k-1)*Binomial[n,k]*(I*Sqrt[3]* ChebyshevU[k, 1/(2*I*Sqrt[3])] + ChebyshevU[k-1, 1/(2*I*Sqrt[3])])]; %t A124959 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 19 2019 *) %o A124959 (PARI) %o A124959 b(k) = if(k<2, k+1, b(k-1) + 3*b(k-2)); %o A124959 T(n,k) = binomial(n,k)*b(k); %o A124959 for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Nov 19 2019 %o A124959 (Magma) %o A124959 function b(k) %o A124959 if k lt 2 then return k+1; %o A124959 else return b(k-1) + 3*b(k-2); %o A124959 end if; %o A124959 return b; %o A124959 end function; %o A124959 [Binomial(n,k)*b(k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 19 2019 %o A124959 (Sage) %o A124959 @CachedFunction %o A124959 def b(k): %o A124959 if (k<2): return k+1 %o A124959 else: return b(k-1) + 3*b(k-2) %o A124959 [[binomial(n, k)*b(k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Nov 19 2019 %Y A124959 Cf. A006138, A006190. %K A124959 nonn,tabl %O A124959 0,3 %A A124959 _Gary W. Adamson_, Nov 13 2006 %E A124959 Edited by _N. J. A. Sloane_, Dec 03 2006