This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A124984 #23 Aug 05 2022 10:50:39 %S A124984 3,11,1091,1296216011,2177870960662059587828905091,76870667,19, %T A124984 257680660619,73677606898727076965233531, %U A124984 23842300525435506904690028531941969449780447746432390747,35164737203 %N A124984 Primes of the form 8*k + 3 generated recursively. Initial prime is 3. General term is a(n) = Min_{p is prime; p divides 2 + Q^2; p == 3 (mod 8)}, where Q is the product of previous terms in the sequence. %C A124984 2+Q^2 always has a prime divisor congruent to 3 modulo 8. %D A124984 D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 191. %H A124984 Robert Price, <a href="/A124984/b124984.txt">Table of n, a(n) for n = 1..15</a> %H A124984 N. Hobson, <a href="http://www.qbyte.org/puzzles/">Home page (listed in lieu of email address)</a> %e A124984 a(3) = 1091 is the smallest prime divisor congruent to 3 mod 8 of 2+Q^2 = 1091, where Q = 3 * 11. %t A124984 a = {3}; q = 1; %t A124984 For[n = 2, n ≤ 5, n++, %t A124984 q = q*Last[a]; %t A124984 AppendTo[a, Min[Select[FactorInteger[2 + q^2][[All, 1]], Mod[#, %t A124984 8] \[Equal] 3 &]]]; %t A124984 ]; %t A124984 a (* _Robert Price_, Jul 14 2015 *) %o A124984 (PARI) lista(nn) = my(f, q=3); print1(q); for(n=2, nn, f=factor(2+q^2)[, 1]~; for(i=1, #f, if(f[i]%8==3, print1(", ", f[i]); q*=f[i]; break))); \\ _Jinyuan Wang_, Aug 05 2022 %Y A124984 Cf. A000945, A007520, A057204-A057208, A051308-A051335, A124984-A124993, A125037-A125045. %K A124984 nonn %O A124984 1,1 %A A124984 _Nick Hobson_, Nov 18 2006 %E A124984 a(10) from _Robert Price_, Jul 04 2015 %E A124984 a(11) from _Robert Price_, Jul 05 2015