cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124987 Primes of the form 12k+5 generated recursively. Initial prime is 5. General term is a(n) = Min {p is prime; p divides 4+Q^2; p == 5 (mod 12)}, where Q is the product of previous terms in the sequence.

Original entry on oeis.org

5, 29, 17, 6076229, 1289, 78067083126343039013, 521, 8606045503613, 15837917, 1873731749, 809, 137, 2237, 17729
Offset: 1

Views

Author

Nick Hobson, Nov 18 2006

Keywords

Comments

Since Q is odd, all prime divisors of 4+Q^2 are congruent to 1 modulo 4.
At least one prime divisor of 4+Q^2 is congruent to 2 modulo 3 and hence to 5 modulo 12.
The first two terms are the same as those of A057208.

Examples

			a(3) = 17 is the smallest prime divisor congruent to 5 mod 12 of 4+Q^2 = 21029 = 17 * 1237, where Q = 5 * 29.
		

Crossrefs

Programs

  • Mathematica
    a={5}; q=1;
    For[n=2,n<=5,n++,
        q=q*Last[a];
        AppendTo[a,Min[Select[FactorInteger[q^2+4][[All,1]],Mod[#,12]==5 &]]];
        ];
    a (* Robert Price, Jul 16 2015 *)