A124990 Primes of the form 12k+1 generated recursively. Initial prime is 13. General term is a(n)=Min {p is prime; p divides Q^4-Q^2+1}, where Q is the product of previous terms in the sequence.
13, 28393, 128758492789, 73, 193, 37, 457, 8363172060732903211423577787181
Offset: 1
Examples
a(3) = 128758492789 is the smallest prime divisor of Q^4 - Q^2 + 1 = 18561733755472408508281 = 128758492789 * 144159296629, where Q = 13 * 28393.
References
- K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, NY, Second Edition (1990), p. 63.
Programs
-
Mathematica
a = {13}; q = 1; For[n = 2, n ≤ 8, n++, q = q*Last[a]; AppendTo[a, Min[Select[FactorInteger[q^4 - q^2 + 1][[All, 1]], Mod[#, 12] == 1 &]]]; ]; a (* Robert Price, Jun 25 2015 *)
Extensions
a(8) from Robert Price, Jun 25 2015
Comments