cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125027 Binomial transform of the "1,2,3,..." triangle.

Original entry on oeis.org

1, 3, 3, 9, 11, 6, 26, 32, 27, 10, 72, 86, 85, 54, 15, 192, 222, 233, 189, 95, 21, 496, 558, 597, 549, 371, 153, 28, 1248, 1374, 1473, 1446, 1160, 664, 231, 36, 3072, 3326, 3549, 3600, 3203, 2246, 1107, 332, 45, 7424, 7934, 8409, 8659, 8201, 6567, 4051, 1745, 459, 55, 17664, 18686, 19669, 20367, 20015, 17503, 12597, 6893, 2629, 615, 66
Offset: 1

Views

Author

Gary W. Adamson, Nov 15 2006

Keywords

Examples

			First few rows of the triangle:
   1;
   3,  3;
   9, 11,  6;
  26, 32, 27, 10;
  72, 86, 85, 54, 15;
  ...
		

Crossrefs

Cf. A072863 (first column), A000217 (diagonal), A164845 (subdiagonal).

Programs

  • Maple
    A27 := proc(n,k)
        option remember;
        if k>= 0 and k <=n then
            if k = 0 then
                1+procname(n-1,n-1) ;
            else
                procname(n,0)+k ;
            end if;
        else
            0;
        end if;
    end proc:
    A125027 := proc(n,k)
        add( binomial(n,j)*A27(j,k),j=k..n) ;
    end proc: # R. J. Mathar, May 21 2018
  • Mathematica
    A27[n_, k_] := A27[n, k] = If[k >= 0 && k <= n, If[k == 0, 1+A27[n-1, n-1], A27[n, 0]+k], 0];
    A125027[n_, k_] := Sum[Binomial[n, j]*A27[j, k], {j, k, n}];
    Table[A125027[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2024, after R. J. Mathar *)

Formula

Given the triangle (natural numbers in succession: 1; 2,3; 4,5,6; ...) as an infinite matrix M and P = Pascal's triangle as a lower triangular matrix, perform P*M, deleting the zeros.
The row sums s(n) = 1, 6, 26, 95, 312, 952, ... obey (-3*n+2)*s(n) +(9*n+7)*s(n-1) + 2*(-3*n-2)*s(n-2) = 0. - R. J. Mathar, May 21 2018