A125027 Binomial transform of the "1,2,3,..." triangle.
1, 3, 3, 9, 11, 6, 26, 32, 27, 10, 72, 86, 85, 54, 15, 192, 222, 233, 189, 95, 21, 496, 558, 597, 549, 371, 153, 28, 1248, 1374, 1473, 1446, 1160, 664, 231, 36, 3072, 3326, 3549, 3600, 3203, 2246, 1107, 332, 45, 7424, 7934, 8409, 8659, 8201, 6567, 4051, 1745, 459, 55, 17664, 18686, 19669, 20367, 20015, 17503, 12597, 6893, 2629, 615, 66
Offset: 1
Examples
First few rows of the triangle: 1; 3, 3; 9, 11, 6; 26, 32, 27, 10; 72, 86, 85, 54, 15; ...
Programs
-
Maple
A27 := proc(n,k) option remember; if k>= 0 and k <=n then if k = 0 then 1+procname(n-1,n-1) ; else procname(n,0)+k ; end if; else 0; end if; end proc: A125027 := proc(n,k) add( binomial(n,j)*A27(j,k),j=k..n) ; end proc: # R. J. Mathar, May 21 2018
-
Mathematica
A27[n_, k_] := A27[n, k] = If[k >= 0 && k <= n, If[k == 0, 1+A27[n-1, n-1], A27[n, 0]+k], 0]; A125027[n_, k_] := Sum[Binomial[n, j]*A27[j, k], {j, k, n}]; Table[A125027[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 27 2024, after R. J. Mathar *)
Formula
Given the triangle (natural numbers in succession: 1; 2,3; 4,5,6; ...) as an infinite matrix M and P = Pascal's triangle as a lower triangular matrix, perform P*M, deleting the zeros.
The row sums s(n) = 1, 6, 26, 95, 312, 952, ... obey (-3*n+2)*s(n) +(9*n+7)*s(n-1) + 2*(-3*n-2)*s(n-2) = 0. - R. J. Mathar, May 21 2018