This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125029 #28 May 10 2025 09:16:07 %S A125029 0,1,1,1,1,2,1,1,1,2,1,2,1,2,2,0,1,2,1,2,2,2,1,2,1,2,1,2,1,3,1,1,2,2, %T A125029 2,2,1,2,2,2,1,3,1,2,2,2,1,1,1,2,2,2,1,2,2,2,2,2,1,3,1,2,2,0,2,3,1,2, %U A125029 2,3,1,2,1,2,2,2,2,3,1,1,0,2,1,3,2,2,2,2,1,3,2,2,2,2,2,2,1,2,2,2,1,3,1,2,3 %N A125029 a(n) = number of exponents in the prime factorization of n that are noncomposite. %H A125029 Antti Karttunen, <a href="/A125029/b125029.txt">Table of n, a(n) for n = 1..10000</a> %H A125029 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>. %F A125029 From _Amiram Eldar_, Sep 30 2023: (Start) %F A125029 Additive with a(p^e) = A080339(e). %F A125029 Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B - C), where B is Mertens's constant (A077761) and C = P(3) - Sum_{p prime >= 3} (P(p) - P(p+1)) = 0.05377157198303445809..., where P(s) is the prime zeta function. (End) %e A125029 a(720) = 2, since the prime factorization of 720 is 2^4 * 3^2 * 5^1 and two of the exponents in this factorization are noncomposites (the exponents 2 and 1). %t A125029 a[n_] := Length @ Select[Last /@ FactorInteger[n], # == 1 || PrimeQ[ # ] &]; a[1] = 0; Table[a[n], {n, 110}] (* _Ray Chandler_, Nov 19 2006 *) %o A125029 (PARI) A125029(n) = vecsum(apply(e -> if((1==e)||isprime(e),1,0), factorint(n)[, 2])); \\ _Antti Karttunen_, Jul 07 2017 %Y A125029 Cf. A001221, A077761, A080339, A125030, A125070. %K A125029 nonn,easy %O A125029 1,6 %A A125029 _Leroy Quet_, Nov 16 2006 %E A125029 Extended by _Ray Chandler_, Nov 19 2006