A125042 Primes of the form 48k+17 generated recursively. Initial prime is 17. General term is a(n)=Min {p is prime; p divides (2Q)^8 + 1; Mod[p,48]=17}, where Q is the product of previous terms in the sequence.
17, 47441, 33000748370307713, 21377
Offset: 1
Examples
a(3) = 33000748370307713 is the smallest prime divisor congruent to 17 mod 48 of (2Q)^8 + 1 = 45820731194492299767895461612240999140120699535617 = 5136468762577 * 33000748370307713 * 270317134666005456817, where Q = 17 * 47441.
References
- G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.
Programs
-
Mathematica
a = {17}; q = 1; For[n = 2, n ≤ 2, n++, q = q*Last[a]; AppendTo[a, Min[Select[FactorInteger[(2*q)^8 + 1][[All, 1]], Mod[#, 48] \[Equal] 17 &]]]; ]; a (* Robert Price, Jul 14 2015 *)
Comments