This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125051 #16 Mar 03 2020 09:58:10 %S A125051 1,2,3,4,5,5,6,7,6,7,8,6,7,8,9,7,8,9,10,8,9,10,11,7,8,9,10,11,8,9,10, %T A125051 11,12,9,10,11,12,13,7,8,9,10,11,8,9,10,11,12,9,10,11,12,13,10,11,12, %U A125051 13,14,8,9,10,11,12,13,9,10,11,12,13,14,10,11,12,13,14,15,11,12,13,14,15,16,9 %N A125051 The sub-Fibonacci tree; a rooted tree in which every node with label k and parent node with label g has g child nodes that are assigned labels beginning with k+1 through k+g; the tree starts at generation n=0 with a root node labeled '1' and a child node labeled '2'. %C A125051 The maximum label for nodes in generation n is Fibonacci(n+2) for n>=0. The total number of nodes in generation n equals A005270(n+2) for n>=0. The sum of the labels for nodes in generation n equals A125052(n). %H A125051 Alois P. Heinz, <a href="/A125051/b125051.txt">Table of n, a(n) for n = 0..24903</a> (generations 0..8) %H A125051 Peter C. Fishburn and Fred S. Roberts, <a href="https://doi.org/10.1016/0166-218X(93)90236-H">Elementary sequences, sub-Fibonacci sequences</a>, Discrete Appl. Math. 44 (1993), no. 1-3, 261-281. %e A125051 The initial nodes of the tree for generations 0..5 are: %e A125051 gen.0: [1]; %e A125051 gen.1: [2]; %e A125051 gen.2: [3]; %e A125051 gen.3: [4,5]; %e A125051 gen.4: (4)->[5,6,7],(5)->[6,7,8]; %e A125051 gen.5: (5)->[6,7,8,9],(6)->[7,8,9,10],(7)->[8,9,10,11], %e A125051 (6)->[7,8,9,10,11],(7)->[8,9,10,11,12],(8)->[9,10,11,12,13]. %e A125051 By definition, there are 2 child nodes for node [3] of gen.2 since the parent of node [3] has label 2; %e A125051 likewise, there are 3 child nodes for nodes [4] and [5] of gen.3 since the parent of both nodes has label 3. %e A125051 The number of nodes in generation n begins: %e A125051 1, 1, 1, 2, 6, 27, 177, 1680, 23009, 455368, 13067353, ... %e A125051 The sum of the labels for nodes in generation n begins: %e A125051 1, 2, 3, 9, 39, 252, 2361, 32077, 631058, 18035534, ... %p A125051 g:= proc(n) option remember; `if`(n=0, [[1, 1]], %p A125051 map(x-> seq([x[2], x[2]+i], i=1..x[1]), g(n-1))) %p A125051 end: %p A125051 T:= n-> map(x-> x[2], g(n)): %p A125051 a:= proc() local i, l; i, l:= -1, []; proc(n) while %p A125051 nops(l)<=n do i:=i+1; l:=[l[], T(i)[]] od; l[n+1] end %p A125051 end(): %p A125051 seq(a(n), n=0..200); # _Alois P. Heinz_, Feb 08 2013 %Y A125051 Cf. A005270, A125052. %K A125051 nonn,look %O A125051 0,2 %A A125051 _Paul D. Hanna_, Nov 19 2006