cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125056 a(n) is the largest positive integer such that floor(a(n)/d(a(n))) = n, where d(m) is the number of positive divisors of m.

Original entry on oeis.org

6, 12, 30, 48, 60, 72, 120, 96, 144, 180, 140, 240, 216, 252, 360, 336, 420, 224, 312, 480, 504, 540, 378, 720, 600, 840, 660, 672, 352, 364, 756, 780, 1080, 960, 1260, 864, 594, 924, 936, 1440, 1320, 1680, 1050, 1056, 1092, 1120, 1512, 1560
Offset: 1

Views

Author

Hugo van der Sanden, Jan 09 2007

Keywords

Comments

We know the sequence is well-defined given the limit x/d(x) > 0.5*sqrt(x) from comments in A036763.
Does every positive integer n equal floor(m/d(m)) for some m?

Crossrefs

Programs

  • Mathematica
    t = Table[ Floor[ n / DivisorSigma[0, n]], {n, 10^5}]; f[n_] := Max@ Flatten@ Position[t, n]; Array[f, 51] (* Robert G. Wilson v, Jan 12 2007 *)