A125077 #4 in an infinite set of generalized Pascal's triangles with trigonometric properties.
1, 1, 3, 1, 4, 11, 1, 7, 15, 41, 1, 8, 38, 56, 153, 1, 11, 46, 186, 209, 571, 1, 12, 81, 232, 859, 780, 2131, 1, 15, 93, 499, 1091, 3821, 7953, 1, 16, 140, 592, 2774, 4912, 16556, 10864, 29681, 1, 19, 156, 1044, 3366
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 3; 1, 4, 11; 1, 7, 15, 41; 1, 8, 38, 56, 153; 1, 11, 46, 186, 209, 571; 1, 12, 81, 232, 859, 780, 2131; ... The upward-sloping diagonal (1, 11, 38, 41) relates to the heptagon and in the form x^3 - 11x^2 + 38x - 41 has a root 5.24697960... = 4 + 2*cos(2*Pi/7). The corresponding matrix is [3, 1, 0; 1, 4, 1; 0, 1, 4]. The next upward-sloping diagonal relates to the octagon, with a characteristic polynomial x^3 - 12x^2 + 46x - 56 and a root 5.414213562... = 4 + 2*cos(2*Pi/8). The corresponding matrix is [4, 1, 0; 1, 4, 1; 0, 1, 4].
Crossrefs
Formula
Upward-sloping diagonals of the triangle are derived from (alternating) characteristic polynomials of two types of matrices: those of the form: (all 1's in the super and subdiagonals and 3,4,4,4,... in the main diagonal) and (all 1's in the super and subdiagonals and 4,4,4,... in the main diagonal.
Comments