cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125091 Triangle read by rows: T(n,k) = (1/6)*k*(k+1)*(k+2)*binomial(n,k) (1 <= k <= n).

This page as a plain text file.
%I A125091 #9 Nov 11 2019 21:49:50
%S A125091 1,2,4,3,12,10,4,24,40,20,5,40,100,100,35,6,60,200,300,210,56,7,84,
%T A125091 350,700,735,392,84,8,112,560,1400,1960,1568,672,120,9,144,840,2520,
%U A125091 4410,4704,3024,1080,165,10,180,1200,4200,8820,11760,10080,5400,1650,220,11
%N A125091 Triangle read by rows: T(n,k) = (1/6)*k*(k+1)*(k+2)*binomial(n,k) (1 <= k <= n).
%C A125091 T(n,n) = n*(n+1)*(n+2)/6 = A000292(n).
%C A125091 Sum_{k=1..n} T(n,k) = 2^n*n*(n+2)*(n+7)/48 = A055585(n-1).
%e A125091 Triangle starts:
%e A125091   1;
%e A125091   2,   4;
%e A125091   3,  12,  10;
%e A125091   4,  24,  40,  20;
%e A125091   5,  40, 100, 100,  35;
%e A125091   6,  60, 200, 300, 210,  56;
%e A125091   7,  84, 350, 700, 735, 392,  84;
%p A125091 T:=(n,k)->k*(k+1)*(k+2)*binomial(n,k)/6: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
%t A125091 Flatten[Table[(k(k+1)(k+2)Binomial[n,k])/6,{n,20},{k,n}]] (* _Harvey P. Dale_, Jan 23 2016 *)
%Y A125091 Cf. A055585.
%Y A125091 Cf. A000292.
%K A125091 nonn,tabl
%O A125091 1,2
%A A125091 _Gary W. Adamson_, Nov 19 2006
%E A125091 Edited by _N. J. A. Sloane_, Dec 04 2006