This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125091 #9 Nov 11 2019 21:49:50 %S A125091 1,2,4,3,12,10,4,24,40,20,5,40,100,100,35,6,60,200,300,210,56,7,84, %T A125091 350,700,735,392,84,8,112,560,1400,1960,1568,672,120,9,144,840,2520, %U A125091 4410,4704,3024,1080,165,10,180,1200,4200,8820,11760,10080,5400,1650,220,11 %N A125091 Triangle read by rows: T(n,k) = (1/6)*k*(k+1)*(k+2)*binomial(n,k) (1 <= k <= n). %C A125091 T(n,n) = n*(n+1)*(n+2)/6 = A000292(n). %C A125091 Sum_{k=1..n} T(n,k) = 2^n*n*(n+2)*(n+7)/48 = A055585(n-1). %e A125091 Triangle starts: %e A125091 1; %e A125091 2, 4; %e A125091 3, 12, 10; %e A125091 4, 24, 40, 20; %e A125091 5, 40, 100, 100, 35; %e A125091 6, 60, 200, 300, 210, 56; %e A125091 7, 84, 350, 700, 735, 392, 84; %p A125091 T:=(n,k)->k*(k+1)*(k+2)*binomial(n,k)/6: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form %t A125091 Flatten[Table[(k(k+1)(k+2)Binomial[n,k])/6,{n,20},{k,n}]] (* _Harvey P. Dale_, Jan 23 2016 *) %Y A125091 Cf. A055585. %Y A125091 Cf. A000292. %K A125091 nonn,tabl %O A125091 1,2 %A A125091 _Gary W. Adamson_, Nov 19 2006 %E A125091 Edited by _N. J. A. Sloane_, Dec 04 2006