This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A125103 #16 Nov 30 2019 15:24:28 %S A125103 1,2,1,3,4,1,4,9,7,1,5,16,22,12,1,6,25,50,50,21,1,7,36,95,140,111,38, %T A125103 1,8,49,161,315,371,245,71,1,9,64,252,616,966,952,540,136,1,10,81,372, %U A125103 1092,2142,2814,2388,1188,265,1,11,100,525,1800,4242,6972,7890,5880,2605,522,1 %N A125103 Triangle read by rows: T(n,k) = binomial(n,k) + 2^k*binomial(n,k+1) (0 <= k <= n). %C A125103 Row sums = A094374: (1, 3, 8, 21, 56, ...). %C A125103 Binomial transform of the infinite bidiagonal matrix with (1,1,1,...) in the main diagonal and (1,2,4,8,...) in the subdiagonal. %H A125103 Harvey P. Dale, <a href="/A125103/b125103.txt">Table of n, a(n) for n = 0..1000</a> %e A125103 First few rows of the triangle are %e A125103 1; %e A125103 2, 1; %e A125103 3, 4, 1; %e A125103 4, 9, 7, 1; %e A125103 5, 16, 22, 12, 1; %e A125103 6, 25, 50, 50, 21, 1; %e A125103 7, 36, 95, 140, 111, 38, 1; %e A125103 ... %p A125103 T:=(n,k)->binomial(n,k)+2^k*binomial(n,k+1): for n from 0 to 11 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form %t A125103 Table[Binomial[n,k]+2^k Binomial[n,k+1],{n,0,10},{k,0,n}]//Flatten (* _Harvey P. Dale_, Nov 30 2019 *) %o A125103 (PARI) T(n,k) = binomial(n,k) + 2^k*binomial(n,k+1); %o A125103 matrix(11, 11, n, k, T(n-1,k-1)) \\ _Michel Marcus_, Nov 09 2019 %Y A125103 Cf. A094374. %K A125103 nonn,tabl %O A125103 0,2 %A A125103 _Gary W. Adamson_, Nov 20 2006 %E A125103 Edited by _N. J. A. Sloane_, Nov 29 2006