A125105 Triangular array with the first half of the odd-indexed rows of A048004.
1, 1, 4, 1, 12, 11, 1, 33, 47, 27, 1, 88, 185, 127, 63, 1, 232, 694, 563, 303, 143, 1, 609, 2526, 2400, 1394, 687, 319, 1, 1596, 9012, 9960, 6215, 3186, 1519, 703, 1, 4180, 31709, 40534, 27095, 14401, 7026, 3311, 1535, 1, 10945, 110469, 162538, 116143, 63872, 31808, 15218, 7151, 3327
Offset: 1
Examples
The odd-indexed rows of triangle A048004 begin 1 1 1 4 2 1 1 12 11 5 2 1 ... so the triangle here begins 1 1 4 1 12 11 ...
Programs
-
Maple
A048004 := proc(n,k) option remember ; if k < 0 or k > n then 0; elif k = 0 or k = n then 1; else 2*procname(n-1,k)+procname(n-1,k-1)-2*procname(n-2,k-1)+procname(n-k-1,k-1)-procname(n-k-2,k) ; fi ; end: A125105 := proc(n,k) A048004(2*n-1,k) ; end: for n from 1 to 13 do for k from 0 to n-1 do printf("%d ",A125105(n,k)) ; od: od: # R. J. Mathar, Nov 23 2007
-
Mathematica
B[n_, k_] := B[n, k] = If[n == 0 || k == 1, 1, Sum[B[n - j, k], {j, 1, Min[n, k]}]]; A048004[n_, k_] := B[n + 1, k + 1] - B[n + 1, k]; T[n_, k_] := A048004[2 n - 1, k]; Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Jan 27 2024, after Maple code here and in A048004 *)
Formula
T(n,k) = A048004(2*n-1,k), 0 <= k < n. - R. J. Mathar, Nov 23 2007
Extensions
More terms from R. J. Mathar, Nov 23 2007
Comments