cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125105 Triangular array with the first half of the odd-indexed rows of A048004.

Original entry on oeis.org

1, 1, 4, 1, 12, 11, 1, 33, 47, 27, 1, 88, 185, 127, 63, 1, 232, 694, 563, 303, 143, 1, 609, 2526, 2400, 1394, 687, 319, 1, 1596, 9012, 9960, 6215, 3186, 1519, 703, 1, 4180, 31709, 40534, 27095, 14401, 7026, 3311, 1535, 1, 10945, 110469, 162538, 116143, 63872, 31808, 15218, 7151, 3327
Offset: 1

Views

Author

Alford Arnold, Dec 07 2006

Keywords

Comments

A000079 counts compositions admitting a variety of triangular views; for example, A048004 and A105147. The subtable formed from the odd rows of A048004 has row sums 1, 8, 44, 208, 912, ... . Because only the first half of rows of A048004 is transferred to this triangle here, there is a difference between row sums of A048004 and row sums here, A045623(n-1).

Examples

			The odd-indexed rows of triangle A048004 begin
  1  1
  1  4  2 1
  1 12 11 5 2 1
  ...
so the triangle here begins
  1
  1  4
  1 12 11
  ...
		

Crossrefs

Programs

  • Maple
    A048004 := proc(n,k) option remember ; if k < 0 or k > n then 0; elif k = 0 or k = n then 1; else 2*procname(n-1,k)+procname(n-1,k-1)-2*procname(n-2,k-1)+procname(n-k-1,k-1)-procname(n-k-2,k) ; fi ; end:
    A125105 := proc(n,k) A048004(2*n-1,k) ; end:
    for n from 1 to 13 do for k from 0 to n-1 do printf("%d ",A125105(n,k)) ; od: od: # R. J. Mathar, Nov 23 2007
  • Mathematica
    B[n_, k_] := B[n, k] = If[n == 0 || k == 1, 1, Sum[B[n - j, k], {j, 1, Min[n, k]}]];
    A048004[n_, k_] := B[n + 1, k + 1] - B[n + 1, k];
    T[n_, k_] := A048004[2 n - 1, k];
    Table[T[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Jan 27 2024, after Maple code here and in A048004 *)

Formula

T(n,k) = A048004(2*n-1,k), 0 <= k < n. - R. J. Mathar, Nov 23 2007

Extensions

More terms from R. J. Mathar, Nov 23 2007